TESIS DOCTORAL

Swarm Intelligence in Computer Vision:
An Application to Object Tracking.

Luis Anton Canalis

Las Palmas de Gran Canaria - Marzo 2010

UNIVERSIDAD DE LAS PALMAS
DE GRAN CANARIA

Instituto Universitario de Sistemas Inteligentes
y Aplicaciones Numéricas en Ingenieria

Para Judith,

por su infinita paciencia para escuchar,
o hacer que escucha,

todo lo que le cuento.

Y por muchisimo més.

Agradecimientos

La principal culpable de que me encuentre escribiendo estas lineas es,
sin lugar a dudas, la Dra. Elena Sdnchez Nielsen, co-directora de esta tesis.
Tras tutorizar mi proyecto de fin de carrera me propuso continuar en la esfera
universitaria realizando un doctorado. Entre aquel momento y hoy han pasado

seis aflos y muchas horas en barco.

Si bien no estaba en mis planes, estos cuatro anos viviendo en Gran Canaria
no han sido tan duros como mis amigos tinerfefios vaticinaban. He de dar las
gracias a los miembros del Grupo de Inteligencia Artificial y Sistemas de la
Facultad de Informatica de la Universidad de Las Palmas de Gran Canaria por

conseguir un ambiente de trabajo tan agradable.

Gracias a los doctores Modestro Castrillon Santana, Javier Lorenzo Navarro
y Jorge Cabrera Gdmez por compartir impresiones profesionales y personales.
Sus distintos puntos de vista en cada conversacion mantenida han sido muy

edificantes.

Quiero dar las gracias especialmente a Francisco Mario Hernandez Tejera
por dirigir como lo ha hecho todo mi trabajo. Cuando uno pasa con su director
de tesis tanto tiempo discutiendo aspectos formales del trabajo como escuchando
historias de todo tipo, la mayor parte nada serias, puede estar seguro de que se
encuentra ante alguien excepcional. Quiero agradecerle especialmente que me

diera libertad para investigar aquello que mds me interesara en cada momento,

comprendiendo perfectamente mi no siempre sana necesidad de cambiar de

registro de vez en cuando.

Debo agradecer al antiguo Ministerio de Educacion y Ciencia la concesion
de la ayuda para la Formacién de Personal Investigador BES-2005-8272 que
he disfrutado al amparo del proyecto TIN2004-07087, financiado por el mismo
Ministerio y el Fondo Europeo de Desarrollo Regional (FEDER).

Finalmente, quiero agradecer a mis padres y a mi hermana todo el carifio y
el apoyo incondicional recibido desde siempre. Aunque algo asi no se agradece,

ha de ser devuelto, y soy consciente de que desde lejos no lo hago demasiado bien.

Foto de portada: Starling flock over Gretna, Scotland. Photograph by Fi Exon.
www.flickr.com/photos/heandfi, www.heandfi.org, www.youtube.com/heandfi

Contents

I PhD thesis document 1
1 Introduction 3
1.1 Swarm Intelligence 4

1.2 Artificial Visiono 7

1.3 Contribution L 9
1.3.1 Trackingusingboids 9

1.3.2 Trackingusing Ragdolls 10

2 Object Tracking 13
2.1 Object definitionsina2Dspace 13
2.1.1 Objectrepresentations 14

2.1.2 Objectdescriptors 15

2.1.3 Objectdetection 22

2.2 Objecttracking survey 27
22.1 Pointtracking Lo 29

222 Kerneltracking L. 30

2.2.3 Silhouette, Contour tracking and Flexible models 32

3 Engineered Swarms 35
3.1 Artificial Life oL 36
3.1.1 Steering Behaviors: Boids 37

3.2 Bio-inspired Computing 40
321 GeneticS. 42

3.2.2 AntColony Optimization 43

3.2.3 Particle Swarm Optimization 45

3.3 Swarms in Computer Vision 48
3.3.1 Swarms for object tracking 50

4 Tracking Swarms 53
4.1 Introduction 53
4.2 Predator S warm Model oL oo 54
4.2.1 Feature Detection Network 54

43 Swarm Definitiono Lo 55
4.4 Particle Movement Rules: tracking and flocking 57
441 Rulel:Hunt 58
442 Rule2:Cohesion 59

443 Rule3: Alignment 60
444 Rule4: Separation 60

4.4.5 Final particle displacement 60

4.5 Constants and weighting strategies 61

i

4.5.1 Staticweights L oL 62

452 Dynamicweights 63
4.6 Prey scents and scentintensity 66
47 Other considerations 68
4.77.1 Image preprocessing 68
4.7.2 Weighted search windows and particle tiredness 68
47.3 Improved exploration 69
474 Pheromonemaps 71
4.8 Differences with PSO approaches 71
4.9 Discussion 73
Sentient Ragdolls 77
5.1 Introduction 77
52 PreviousWork 78
5.3 Articulated Rigid Body Dynamics 81
5.3.1 Sentient Ragdoll Definition 82
5.32 Kinematicso 83
5.33 Constraint Solver 84
5.34 External constraints 86
5.4 Application to Computer Vision 87
54.1 Tracking 88
5.4.2 Pattern matching and updating 90
5.4.3 Managing vIewso 94
54.4 Particlelayout oL 98

il

5.4.5 Tracking quality and particle weights 102

5.4.6 Ragdoll elasticity and shape recovery 104

5.5 DISCUSSION v v v v e e e e e e 106

6 Evaluation 109
6.1 Swarmtrack evaluation 110

6.1.1 First test configuration: scents, intensities and fixed weights110

6.1.2 Second test configuration: scents and random weights . . 111

6.2 Sentientragdoll evaluation 113
6.3 Useofboxplots 114
6.4 Sequencesanalysis 115
6.4.1 Boxsequence 115

6.42 Handsequence 120

6.4.3 Crossing pedestrian sequence 125

6.4.4 Skiersequence 129

6.4.5 Girlsequence 133

6.5 Othermethods. 137
6.6 Discussion. 142
7 Conclusion and Future Work 147
7.1 Conclusion 147
7.2 Main contributions Lo 149
73 FutureWork 152

v

I Resumen en Espanol 155

8 Inteligencia de Enjambres en Vision por Ordenador 157
8.1 Objetivos e 157

8.2 Planteamiento 159

83 Metodologia L 161
8.3.1 Seguimiento de Objetos 161

8.3.2 Enjambres Artificiales 164

8.3.3 Computacion bioinspirada 170

8.4 Aportaciones Originales 174
8.4.1 Modelo de enjambre de particulas libres: Boids 174

8.5

8.4.2 Modelo de enjambre de particulas sujetas a restricciones:

Ragdolls 189
Conclusiones 208
85.1 TrabajoFuturo 211

List of Figures

1.1 Starlingclouds 5
1.2 Messor Sanctus corpse piles 6
2.1 Objectrepresentations 16
2.2 Imagechannels 17
2.3 Image gradient and binaryedges 19
24 LBPpreprocessedimages 21
2.5 Discriminative features computedonline 22
2.6 Salientpoints e 23
2.7 Saliency-based visual attention 24
2.8 Superpixels 26
2.9 Interleaved object categorization and segmentation. 27
2.10 Matching local self-similarities across images and videos. 28
2.11 Taxonomy of tracking methods 28
2.12 Denseoptical flow oL oL 30

vii

LIST OF FIGURES

viii

2.13 Meanshifttracking oL oo L 32
2.14 Levelsetstracking 33
3.1 Conway’sGameofLife. 37
3.2 Evolvedvirtual creature 38
3.3 Steering behaviors oL 39
34 Combined behaviors L oL 41
3.5 Messor Sanctus simulation 0oL 42
3.6 Particle Swarm Optimization 47
3.7 Adaptative pheromone maps 49
3.8 PSO-based objecttracker 51
3.9 Tracking a flock of features 51
4.1 Swarm perception scheme. 55
4.2 Swarminitialization Lo oo 57
43 Rule 1: Huntresultant. 59
4.4 Combined steering behaviors. 61
45 NoOISewave i e 63
4.6 Particle trajectories 65
477 Noisefilteringo 69
4.8 Particletirednesso Lo 69
4.9 Random searches based on particle’s comfort 70
4.10 Pheromonemapso 71
4.11 Steering behaviors applied to tracking 73
4.12 Successfully tracked examples 74

4.13

4.14

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

5.19

6.1

6.2

Fast moving object sequence. 74
Tracking problems 75
Ragdoll games 79
Kinematicchain 80
Active Appearance Models 81
Constraint satisfactiono 85
Articulated body elasticity oL 86
Independent free-roaming particles 89
Ragtrack unfolds to recoveritsshape 90
Minimainasearchwindow 91
Tracking at different scales in constant time 92
Context based updating 97
User defined structures 98
Simple grid with non-overlapping 19x19 patches. 100
Rigid grid with non-overlapping 19x19 patches. 100
Delaunay triangulation from KLT points, using 19x19 patches. . . 100
Delaunay triangulation from SURF scale salient points. 101
Folding structures 101
Grid configurations 102
Ragdoll elasticity and occlusion 105
Changesinscale 107
Fourscents 112
Box sequence, swarm Lo Lo 116

X

LIST OF FIGURES

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

Box tracking with swarms, 1 117
Box tracking with swarms, 2 117
Box sequence, ragdollo oL 118
Box tracking withragdolls 119
Hand sequence, swarm 120
Hand tracking withswarms 1 122
Hand tracking withswarms 2 122
Hand sequence, ragdoll 123
Hand tracking, ragdoll 124
Crossing pedestrian, swarm 125
Crossing pedestrian, swarm 1 126
Crossing pedestrian, swarm2 126
Crossing pedestrian sequence, ragdoll 127
Crossing pedestrian tracking, ragdoll 128
Skier sequence, swarm u e e e 129
Skier tracking, swarm 1o oL 130
Skier tracking, swarm2 130
Skier sequence, ragdoll Lo 131
Skier tracking, ragdoll L Lo 132
Girl sequence, swarm 133
Girl tracking, swarm 1 134
Girl tracking, swarm 2 oL Lo 134
Girl sequence, ragdoll 135
Girl tracking, ragdollo oo 136

6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34

8.1
8.2
8.3
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

Swarmtrack, Sentient ragdoll, OpenTracking and Camshift 137
Method comparison, Box oL, 138
Method comparison, Hand 139
Method comparison, Girlo L. 139
Method comparison, Pedestrian. 140
Method comparison, Skio 140
Drifting template 1 145
Drifting template 2 145
Representaciones de objetos 164
Juegodelavida o 166
Comportamientos direccionales 167
Criaturadigital 171
Optimizacion por enjambres de particulas 173
Reglal:Caza.. 177
Esquema de percepcion del enjambre L. 179
Cuatroaromas i 180
Ondaderuido 181
Ejemplode enjambre 182
Filtradoderuido 185
Mapas de feromonaso 186
Comportamientos direccionales aplicados al seguimiento 187
Ejemplos de seguimiento correcto 188
Problemas en el seguimiento 189

X1

LIST OF FIGURES

Xii

8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26

Satisfaccion de restriccioneso 192
Elasticidad de un cuerporigido 193
Particulas libres independientes 195
Desplegado de Ragtrack para recuperar su forma 195
Minimos en una ventana de busqueda 197
Seguimiento a diferentes escalas en tiempo constante. 197
Actualizacién basadaencontexto L. 199
Estructuras definidas porelusuario 202
Configuraciones genéricas 203
Elasticidad del Ragdoll y ocultamientos 207

Resumen

La conocida como Inteligencia de Enjambres aparece bajo diversas formas tanto
en la cultura popular (libros, peliculas y videojuegos) como en entornos de
investigacion y desarrollo. El concepto, surgido a partir del comportamiento
de animales eusociales, propone formas de inteligencia colectiva emergente a
partir de la interaccion entre entidades relativamente simples. Como grupo,
consiguen abordar y resolver problemas a los que, como individuos, dificilmente

encontrarian solucion.

A pesar de que las soluciones numéricas basadas en Inteligencia de
Enjambres fueron propuestas hace més de dos décadas, es ahora cuando empiezan
a ser aplicadas en campos diversos. Puesto que los individuos que forman un
enjambre realizan su actividad de manera independiente, los enjambres artificiales
son altamente paralelizables, lo cual resulta muy adecuado para ser implementado

en los actuales ordenadores multi-nicleo.

Resulta igualmente atractiva la relativa simplicidad de cada miembro de
un enjambre, ya que su disefio puede resultar mds abordable que el de otras

metodologias monoliticas y complejas.

El uso de estas técnicas en Vision por Computador parece limitado a su
aplicacion en problemas de optimizacién, con algunas excepciones puntuales.

Dado que este campo estd abierto a la experimentacion, gracias en parte a la

Xiii

Resumen

inexistencia de un modelo tnico de vision artificial, la adopcion de técnicas
basadas en enjambres puede dar lugar a soluciones originales a problemas

conocidos.

Este trabajo aborda el problema del seguimiento de objetos en secuencias de
video desde la perspectiva ofrecida por la inteligencia de enjambres. Siguiendo
como maxima la simplicidad de cada individuo y su independencia frente al
resto de componentes del grupo, independencia relativa al procesamiento de la
informacién pero no a su actividad ’social’, se proponen dos soluciones basadas
en enjambres. Se mostrard como el comportamiento que emerge de la interaccién

entre individuos va mds alla de las capacidades individuales.

El presente documento se organiza de la siguiente manera. EIl primer
capitulo ofrece una introduccion a la Inteligencia de Enjambres desde los
modelos bioldgicos mds conocidos y a la Vision por Computador, asi como una
breve descripcion de las contribuciones de este trabajo. El segundo capitulo
revisa la definiciéon de objetos en imagenes digitales y el estado del arte de su
seguimiento en secuencias de video. EI tercer capitulo aborda los enjambres
artificiales inspirados en modelos bioldgicos, asi como su aplicacion en Vision
por Computador. En el cuarto y quinto capitulo se presentan las aportaciones
de este trabajo, dos soluciones de seguimiento inspiradas en enjambres. El
sexto capitulo evaliia ambas soluciones aplicandolas sobre distintas secuencias
de video. Finalmente se ofrecen las conclusiones alcanzadas y las futuras lineas

de investigacion.

X1V

Abstract

The so-called Swarm Intelligence appears in various forms in popular culture
(books, movies and video games), research and development environments.
This concept, coined from the observation of the behavior of eusocial animals,
proposes forms of collective intelligence emerging from the interaction between
relatively simple entities. As a group, they manage to tackle problems that, as

individuals, would be difficult to solve.

Although numerical solutions based on Swarm Intelligence were proposed
over two decades ago, it was not until recently that different fields begun
adopting them. Since individuals belonging to a swarm carry out their work
independently, artificial swarms are highly parallelizable, which is very suitable
for their implementation in current multi-core computers. The relative simplicity
of swarm members is equally attractive, being their design more attainable than

other monolithic and complex methodologies.

The use of these techniques in Computer Vision seems limited to their
application to optimization problems, with some isolated exceptions. Since this
field is open to experimentation, thanks in part to the lack of a unique model of
machine vision, the application of techniques based on swarms can lead to novel

solutions to known problems.

This work addresses the problem of object tracking in video sequences from

XV

Abstract

the perspective offered by the intelligence of swarms. The main contributions
of this work are two solutions that were designed following the principle of
individual simplicity and individual independence between swarm members,
independence relative to their information processing activity. The first solution
considers a group of free-roaming particles that are guided by simple steering
behaviors. In the second solution, particles are linked with distance constraints,
shaping an articulated rigid body. In both cases, particles are able to extract
information from images and react according to a given visual task like object
detection or tracking. It will be shown how the behavior that emerges from the

interaction between individuals goes beyond individual capabilities.

This document is organized as follows. The first chapter provides an
introduction to Swarm Intelligence and Computer Vision, as well as a brief
description of the contributions of this work. The second chapter reviews the
definition of objects in digital images and the state of the art in object tracking
in video sequences. The third chapter presents biological models and their
application to Computer Vision. In the fourth and fifth chapters the two main
contributions of this work are presented: two tracking solutions inspired by
swarms. In the sixth chapter both solutions are empirically evaluated. The last
chapter concludes this work summarizing conclusions and offering future research

directions.

Xvi

Part 1

Swarm Intelligence
in Computer Vision.

An Application to Object Tracking

Introduction

ROM observation and imagination comes inspiration. Ever since Da Vinci
F tried to mimic the wings of bats and large birds in his Flying Machines, and
surely even before, engineers, designers, inventors, architects, artists and creative
individuals in general have looked into Nature’s designs for an answer. Although
Bionics, the application of biological methods and natural systems to the study and
design of engineering systems and modern technology, is a relatively new concept
(coined by Jack E. Steele in 1958), it has been constantly present in mankind’s

technological developments.

The field of Artificial Intelligence, or Al, attempts to understand and build
intelligent entities (Russell and Norvig, 2003). Philosophers, psychologists,
linguists, mathematicians and computer engineers, among many others, study
intelligence and discuss its roots in the struggle to tackle a wide variety of topics:
problem solving, reasoning, planning, learning, natural language processing or
perception, to name a few. Many tools have been traditionally used in Al to deal
with such a number of tasks, from First-Order Logic to Fuzzy Logic, Informed

Searches, Optimization, Classifiers, Probabilistic Reasoning and many more.

Naturally, as the ultimate goal of Al consists on replicating Intelligence,
there exist many bio-inspired approaches. Probably, the most well known
example, and a whole branch within Al, would be the use of artificial neural

networks that mimic their biological counterpart. However, not until recently have

Introduction

Al researchers turned their attention towards social animals in their quest for new

approaches to solve old problems more efficiently.

As biologists understand the behavior of social animals and how relatively
unintelligent creatures manage to accomplish complex tasks, their findings
encourage researchers from many fields to adopt solutions based on what is known

as Swarm Intelligence.

1.1 Swarm Intelligence

In our collective minds, the Queen of a swarm still acts as some kind of Overmind
that controls the hive. Many science fiction novels depict alien swarm-like
creatures governed by a single mind. In Robert A. Heinlein’s Starship Troopers,
the Pseudo-Arachnids were controlled by the Brain Bug (Heinlein, 1987). If it
died, the colony died. Similarly, in Orson Scott Card’s Ender’s Game, the Hive
Queen controlled the entire Bugger race as a single collective supermind (Scott-
Card, 1986). Far from being just fiction tales, these ideas have their origins in the

hypotheses of late 19th and early 20th century naturalists.

In 1905, Edmund Selous, ornithologist and confirmed Darwinian, wrote

when observing tens of thousands of starlings coming together to roost:

“They must think collectively, all at the same time, or at least in
streaks or patches a square yard or so of an idea, a flash out of so

many brains.”

The first hypotheses about the mechanisms underlying the collective
behavior of insects were clearly anthropomorphic (Buchner, 1881) (Forel, 1921)
(Thorpe, 1963). Actually, it seems that the ant or bee queen neither rules the
colony or hive or acts as a central peacemaker or coordinator of workers’ activities
(Reeve and Gamboa, 1983) (Reeve and Gamboa, 1987). Most social animal
societies are not hierarchical nor centralized and there exists no supervision, as
many works in the last decades reveal (Theraulaz et al., 1998) (Jha et al., 2006).

Figure 1.1: Millions of European starlings migrate through the marshlands of western
Denmark, where they appear in mass formations before sunset each day (Earth Science
Picture of the Day, author/s unknown.)

More amazing than the hypothesis of an Overmind is the fact that insect
colonies are composed of autonomous units acting locally. Following simple
probabilistic stimulus-response behaviors (Denebourg et al., 1983), they are
unable to assess a global situation and have no knowledge of the global
pattern. While this behavior applies to collective decision-making and movement
coordination in animal groups like flocks, herds, schools and even human groups
(Miller, 2007) (Gordon, 2007) (Zimmer, 2007), it is critical in the development of
social units of eusocial animals, usually known as superorganisms (Tautz, 2008).

The key concept behind Swarm Intelligence seems to be Stigmergy, a form
of self-organization. This concept was introduced in 1959 by French biologist
Pierre-Paul Grass to refer to termite behavior (Grass, 1959). He defined Stigmergy
as "The stimulation of workers by the performance they have achieved.”, after his
observations of the coordination and the regulation of building activities in termite
colonies. Each action of a termite leaves signs in the environment, signs that
termites sense and that determine their subsequent actions. When a termite worker
scoops up a mud ball from its environment, it invests the ball with pheromone.
This chemical attracts nest mates, so other termites are likely to drop their own

mud balls next to previously deposited mud balls. Over time, complex structures

Introduction

grow and form the nest.

Most social wasps build their nests similarly, using chewed wood pulp
and plant fibers, cemented together with oral secretions (Ross and Matthews,
1991). Like termites, the building activity of wasps is also driven by the
local nest structure (Karsai and Theraulaz, 1995). Apparently, wasps detect the
configuration of nearby nest cells with their antennae, and add new cells with
higher probability to corner areas where three adjacent walls are already present
(Camazine et al., 2001).

A similar behavior is observed in numerous ant species when carrying their
dead out of the nest, which has been studied under controlled conditions with
Messor Sanctus ants (Theraulaz et al., 2002) (Jost et al., 2006).

1.5h 3.0h 8.0h

Figure 1.2: Typical spatio-temporal dynamics of corpse clustering by ants filmed from the
top through the acrylic glass covering the experimental chamber, without (a) and with (b)
air currents. Black dots are ant corpses and black arrows indicate the air flow direction
(Jost et al., 2006).

[CYR 000

without air currents

o 0.0h 24.0h

with air currents

From an initial setting where corpses are spread over the whole surface of
an arena, ants are able to collect and aggregate them within a few hours in a low
number of piles. An ant will pick up or drop a corpse with a probability that
depends on the density of corpses in the vicinity. A high density of corpses will
lead to a higher probability of dropping the one the ant is carrying and a lower
probability of picking up a corpse, and vice versa. This way, without a central
coordination system, ants will slowly pick up corpses and drop them in growing

piles (see Figure 1.2)

One of the most classic examples of stigmergy is the way ants create

pheromone trails to guide nest mates (Holldobler, 1990), and how this process
leads to the discovery of the shortest path between two points. When an ant finds
a food source, she returns to the nest laying down a pheromone trail. Ants are
attracted by this chemical, which will guide them towards the food source. As
more ants find the food and return to the nest, laying down more pheromone on the
same trail, the signal is reinforced. The more ants use a trail, the more attractive
it becomes. But pheromones evaporate with time, so quiet trails will become
uninteresting. From all the available paths between two points, the shortest one
will be visited by a higher number of ants, as it takes less time to traverse it back
and forth. Thus, its pheromone concentration will become stronger than that of

longer paths, attracting more ants.

Social animals are able to assess certain group states from local interactions
or observations, and adapt their activity accordingly (Fourcassi and Deneubourg,
1994). Locust infer the size of the colony from the number of individuals in their
surroundings. They start cannibalizing nearby mates when they feel the local
population rises above a certain threshold. As they avoid nearby mates, they align
their own movements with any neighbor. This way, they create huge bands that
move in the same direction, pushed by fleeing individuals that avoid being eaten
by those mates on their back (Bazazi et al., 2008).

For an in-depth introduction to Swarm Intelligence please refer to (Miller,
2007) and (Zimmer, 2007).

1.2 Artificial Vision

Computer Vision is the branch of Artificial Intelligence within Computer Science
that is concerned with the theory for building artificial systems that obtain
information from images. Using image capturing devices, machines perceive the
visual world around them, analyze it and react accordingly. See (Forsyth and

Ponce, 2003) for a reference document.

Computers may obtain visual information through a wide variety of visual

sensors that are sensitive to certain wavelength ranges within the electromagnetic

7

Introduction

spectrum. Depending on the type of sensor, resulting image data may be a
bidimensional image or a three-dimensional volume, and it is commonly stored
in matrixes which cell values correspond to radiation intensity in a certain
spectral band. Light-sensitive cameras, the most commonly used sensors, capture
wavelengths within the visible spectrum, ranging from 400nm. to 700nm.
(although some cameras also perceive infrared light, these ranges are usually
filtered).

It is a common approach in Computer Vision, due to the nature of visual
sensors, to construct a symbolic representation of the real world, or distal space,
in an internal representation, or proximal space. This proximal space is usually
represented by bidimensional images, projections of the distal space created by
light-sensitive cameras. It is in this proximal space where computers analyze and
interpret the symbols associated to objects in the distal space, which complexity
is otherwise intractable (Edelman, 1999). These images are interpreted with
different purposes, like the detection, classification, tracking or segmentation of

objects projected from the distal space.

Back in the early years of Computer Vision, in the 1950s and 1960s, it was
believed that building perceiving machines would take no more than a decade.
After all, seeing is something we accomplish without effort. However, it was
soon understood that vision was a task far more complex than imagined. From
the physical and biological description of our own visual system to actually
understanding what we are seeing, there still exist many unknown processes that
involve many different fields like Physics, Neuroscience or Psychology. Still
today, Computer Vision is an immature field plagued with specific solutions to
concrete problems, as there exists no standard formulation to the computer vision
problem. Nevertheless, successful specific solutions may be combined in complex
systems in an effort to solve broader problems. There exist commercial solutions
for many visual tasks like Image Processing, Object Detection and Recognition,

Image Retrieval, Optical Character Recognition or Tracking, to name a few.

While the underlying problem of the current approach to Vision may reside
in the Von Neumann architecture of current computers, Computer Vision is still

an interesting challenge that deserves attention.

1.3 Contribution

The present work explores the application of Swarm Intelligence to Computer
Vision, and proposes two contributions to visual object tracking in video
sequences. The first one consists of a Swarm Intelligence metaphor where
particles behave like predators hunting a prey, being the prey the object to track.
While the patterns of motion remind of a chaotic flying swarm, tracking emerges

from the trajectory of the group centroid.

The second contribution considers how to include structural constraints in
a group of independent tracking particles, adopting a solution from the video-
game field known as Ragdolls, suitable for real time processing. As each particle
follows a part of the tracked object, its position is corrected in order to satisfy
structural constraints. All together, linked particles create an elastic articulated
rigid body that may deform to adapt itself to the underlying object, while still

being able to recover its original shape.

1.3.1 Tracking using boids

Boids, by Craig Reynolds (Reynolds, 1987), is a computer model designed to
achieve natural coordinated animal motion in computer animations. Boids exists
in a virtual environment that simulates an Euclidean three-dimensional or two-
dimensional flying space, which may include virtual entities like obstacles, food,
hazards, friendly or enemy units or whatever the designer comes up with. Boid
groups navigate their virtual world in a manner that resembles real life animal

groups, even though their reactions are ruled by simple vector arithmetic.

Boids are able to wander realistically, decelerate when approaching a target,
adjust their movement to a path defined by a curve, adjust their orientation to avoid
future collisions with static obstacles, steer towards a target or away from it, stick
close to local flockmates or imitate their movement, and almost any other behavior
that can be defined using an orientation and a velocity vector computed strictly

from local information. The combination of these steering behaviors creates

Introduction

complex but natural responses like the ability to follow a leader orderly, traverse

a crowded path avoiding collisions or queue to go through a narrow doorway.

While playing with Reynolds’s boids, the next questions were raised: what
if the space where boids evolve were defined by the image frames that compose a
video sequence, and boids were able to interact with them? What if boids could
look for a certain feature in the landscape created by an image? Would boids be
able to follow an image patch as it traverses the proximal space and, if so, could

interacting individual efforts result in an emerging object tracking behavior?

1.3.2 Tracking using Ragdolls

The beauty of boids, the independence of particles and the emerging behavior, is
both their strength and their weakness. The relative position of each particle to

other particles is irrelevant, the swarm lacks an organized structure.

How could structural constraints be introduced while keeping particle

behavior independence?

Chronic Logic’s Gish featured in 2005 an improbable hero for a videogame:
a ball of tar. Two years later, in 2007, Cryptic Sea acquired the rights to Gish
from Chronic Logic and announced the awaited sequel. While it has not yet
been released (up to late 2009), their creators offered a teaser trailer of the new
Gish three weeks into development, focusing on the new physical structure of
the main character. The new ball of tar was composed by more than a hundred
particles joined by elastic links, creating a viscous slime that was able to stretch
or shrink, breaking into smaller slimes when links were broken. It made a very

good impression.

But, moreover, it was the answer to how independent tracking particles
could be linked together effortlessly, computationally speaking, to create a single

shape-preserving elastic entity.

Even before Gish 2, many award-winning videogames have used similar

physic engines. But it was Thomas Jakobsen, working for 1O Interactive’s

10

Hitman: Codename 47, who first proposed a comprehensive, fast and stable
physics system, commonly known as Ragdoll physics because human-like
structures governed by these systems behave like stringless marionettes (Jakobsen,
2001).

The second contribution of the present work consists on the application
of Ragdoll physics to Computer Vision tasks, modeling articulated bodies as
particles with constraints, using a Verlet integration scheme (Verlet, 1967) to
control particle dynamics and solving constraints using relaxation. Thanks to the
relative simplicity of Ragdoll physics, elastic structures can be integrated into

complex Vision tasks like clustering, articulated body pose analysis or tracking.

11

Object Tracking

BJECT tracking, the action of following visual entities autonomously as they
O traverse a video sequence, is a fundamental problem in computer vision
(Yilmaz et al., 2006). While tracking under controlled or known environments
can be considered a solved problem, a general tracking solution still remains a
challenging task. Object tracking is thus a widely researched topic in computer

vision.

Tracking is basically a low level, pre-categorical task: objects may be
followed no matter their class. Babies are able to follow colorful toys even
before they learn what they are, relying on low level cues like color, textures
and movement. Once an object is learnt, the tracking activity may make good
use of known information from the target like movement behavior or possible
appearances to improve robustness. However, this work will avoid the loaded
nature of visual objects. No specific object classes are considered and thus no

class-related information will be used.

2.1 Object definitions in a 2D space

There exists no single definition of what an object is in the proximal space (the
space that stores a projection of the real world, or distal space, created by a visual

sensor) (Edelman, 1999). If any, it would be anything that is of interest for the

13

Object Tracking

task at hand.

Objects are characterized by their appearance, using features computed from
images to describe their visual aspect, but also by their geometry, motion and
possible relations with other objects, which defines their shape and degree of non-
rigidity. How objects are represented determines how to work with them, and the
nature of the solution to a visual problem is tightly related to the chosen object

definition.

2.1.1 Object representations

Different representations are adopted depending on the degree of non-rigidity of
an object and whether it is defined by a single or multiple parts. While rigid
objects require simpler descriptions, non-rigid motion is exhibited by most real

world objects.

Non-rigid motion is generally classified in three groups: the motion of rigid
parts, where parts of an object move independently one of another (categorized as
articulated motion), motion of coherent objects and motion of fluids. In computer
simulations, coherent motion is usually estimated through discrete articulated
rigid bodies composed by multiple infinitesimal parts. An object classification
scheme based on non-rigidity degrees is proposed in (Kambhamettu et al., 1994).

The following definitions are given:
e Rigid motion: all distances and angles are preserved and it has no associated
non-rigidity.

e Articulated motion: rigid parts conform to rigid motion constraints, but

overall motion is not rigid.

e Quasi-rigid motion: deformations are restricted to be small. Any general

motion is quasi-rigid when viewed in a sufficiently short time window.

e [sometric motion: is defined as motion that preserves distances along the

surface and angles between surface curves.

14

e Homothetic motion: motion with a uniform expansion or contraction of the

surface.

e Conformal motion: non-rigid motion which preserves the angles between

surface curves, but not distances.

e Elastic motion: non-rigid motion whose only constraints is some degree of

continuity or smoothness.

e Fluid motion: violates the continuity assumption. It may involve

topological variations and turbulent deformations.

Knowing how an object evolves in a video sequence, whether it is rigid
or elastic, dictates how it may be described. The simplest representation of a
visual object in a bidimensional space is a single point, which may coincide with
the object’s centroid. Simple geometric shapes (i.e. rectangles or ellipses), can
be used to define image regions around specific points, which may enclose the
whole object or represent distinct parts at different scales. Affine transformations
can be considered in order to correctly adapt these shapes to rotations, shearing,
translations and scaling. A collection of points and/or regions may be combined to
define compound objects. In order to deal with deformable targets, many works
consider silhouettes, contours and skeletons due to their versatility to describe

shapes. Figure 2.1 shows some possible object representations.

Once the shape or structure of an object is defined, it must be described

using information extracted from image values.

2.1.2 Object descriptors

Digital images are composed by thousands of values, called pixels, stored in a
bidimensional grid that represents radiation intensities captured by a sensor in
a certain spectral band. Common photographic digital cameras use a CMOS or
CCD image sensor that operates with some variation of the RGB model, capturing

wavelengths from the three additive primary colors: red, green, and blue. Thus,

15

Object Tracking

Figure 2.1: Bidimensional objects may be represented in many ways: by a centroid, a
collection of interest points (with or without scale or affine transformations), rectangles,
fitted ellipses, a collection of parts, skeletons, points in their contour, complete contours,
silhouettes...

individual pixels just contain color information projected from the distal space.
In order to define a low level descriptor of an object in a digital image, relations
between neighboring pixels must be described in terms of spatial and frequential

measurements.

16

Color spaces

Light-sensitive cameras generally use the RGB aditive color model, where the
three primary additive colors red, green and blue are added to create a wide range
of pigments. However, the RGB color space is not perceptually uniform. A
system is perceptually uniform if a small perturbation to a component value is
approximately equally perceptible across the range of that value. In the RGB color
space, distances between colors that are visually different may be numerically

similar, and vice versa.

(c) Red

- CI“T}
oA N

(g) B (h) Hue (i) Saturation
Figure 2.2: From a given RGB image other color spaces can be computed, like HSL
(Hue, Saturation and Lightness) or CIELab (Lightness, a, b). Channels are shown
independently. Their values were normalized and remapped to grayscale for visualization
purposes.

Many RGB non-linear transformations have been proposed in an attempt to
obtain a reasonable perceptually-uniform color space. The following examples
are color spaces that create independent channels for chrominance and luminance

information:

17

Object Tracking

18

e Normalized Color Coordinates: also known as red-green normalized, this

color space only represents chromatic information. It has provided good
results even under wide lighting variations (Fritsch et al., 2002) (Schmidt
and Castrillon, 2008).

HSL: it stands for Hue (color or, according to (Smith and Guild, 1931):
the attribute of a visual sensation according to which an area appears to
be similar to one of the perceived colors, red, yellow, green and blue, or
a combination of two of them), Saturation (colorfulness of an area judged
in proportion to its brightness (Smith and Guild, 1931)) and Luminance
(perceptual response to lightness (Smith and Guild, 1931)). Hue and
Saturation channels are independent from Luminance, so chromacity may

be defined using just Hue and Saturation.

However, this color space suffers two main problems: Hue values are
defined by angles in a circle, but 0° and 359° both correspond to the
same red color; and they are unreliable in low Luminance or Saturation
regions, showing noisy values. Both problems make computing distances
between two colors in this space more difficult: while Hue distances can
be computed from the length of the chord between two Hue angles, noisy
Hue values are hard to deal with, requiring the definition of dark and low
saturation levels. Alternatively, an HSL variant where Hue is non cyclic can
be used, requiring a conversion of the Hue value from polar to Cartesian
coordinates (Mundhenk et al., 2005).

CIE L*a*b and L*u*v: two CIE (International Commission on
Illumination) standardized systems that, according to (Smith and Guild,
1931), "improve the 80:1 or so perceptual nonuniformity of XYZ to
about 6:1”. Luminance (L channel) represents lightness, while a*b* and
u*v channels store chromatic information. This color space demands
more computation than the previous two, but it is more descriptive than
Normalized Color Coordinates and color distances can be easily computed
using the Euclidean Distance. CIELuv, however, seems to behave much
better than CIELab in darker regions.

Figure 2.2 shows an RGB image decomposed in most previously mentioned

channels.

Gradients and edges

Proximal object boundaries usually generate strong changes between
corresponding neighboring pixel values. Because images can be considered
two-variable functions, change strength can be obtained computing partial
derivatives in the horizontal and vertical directions. Operators based on the
first derivative of an image, its gradient, include Roberts, Prewitt, Sobel and
Frei-Chen. (Forsyth and Ponce, 2003)

Figure 2.3: From the left-most RGB image, a Sobel operator computes vertical and
horizontal gradients, from which the gradient magnitude image shown in the middle is
created. Binary edges in the right-most image are computed suppressing non-maxima
values from the gradient image.

Edges are binary maps where active pixels represent boundaries. Edge
points of an image can be detected by finding the zero crossings of the second
derivative of Gaussian filtered image intensities (Laplacian of Gaussian). Classic
edge detectors like Canny (Canny, 1986) and Deriche (Deriche, 1987) rely on
non-maxima suppression from image gradient values followed by an hysteresis
process to find representative edges. While both methods return complete edges
(i.e. showing no gaps), they are not very stable in video sequences if parameters

are not properly set (Anton-Canalis et al., 2006a). Edges can also be computed

19

Object Tracking

at different scales, adding robustness against noise, as proposed by (Perona and
Malik, 1990). For an in-depth review of edge detection see (Ziou and Tabbone,
1998).

Textures

A texture is created by the regular repetition of pixel values on an image region,
quantifying properties such as smoothness and regularity. Compared to color
and edges, textures require a more expensive preprocessing step to generate
appropriate descriptors. Textures may contain color information, buy they are less
sensitive to changes in illumination than color values because they also contain

structural information.

The list of available texture descriptors is long (Tuceryan and Jain, 1993)
(Puig and Garcia, 2006). The most frequent techniques include Gabor filters
(Fogel and Sagi, 1989), steerable pyramids (Greenspan et al., 1994) and Local
Binary Patterns (LBP) (Pietikdinen, 2005).

Local Binary Patterns (LBP) are image descriptors commonly used for
classification and retrieval. Introduced by Ojala et al. (Ojala et al., 2002) for
texture classification, it is characterized by its invariance to monotonic changes
in illumination and low processing cost, which makes it suitable for real-time

processing.

Given a pixel, the LBP operator first obtains a binary pattern comparing the
gray value of the pixel with those of its neighbors in a circular neighborhood.
Then the pixel is assigned a value computed from the resulting pattern according
to a weighting mask, as shown in Equation 2.1. A region is described from
the concatenation of local LBP histograms. Rotation invariance is achieved

considering circular local binary patterns.

ot 1z>0
LBPpr(ze,ys) = > s(g, —g.)2% , s(z) = - 2.1
PR(Te, Ye) ;(gp 9c) (z) {0x<0 (2.1)

LBP can also be used as a preprocessing method, having the effect of

20

Figure 2.4: Examples in Yale database B: left above - the original face images [2]; right
above - preprocessed by linear high-pass filter, left below - preprocessed by the LBP with
256 patterns [15]; right below - preprocessed by the simplified LBP. Dynamic ranges are
edited for visualization purposes.

emphasizing edges and noise. To reduce noise influence, a modification to
Equation 2.1 has been proposed (Tao and Veldhuis, 2007). Instead of assigning
each neighbor a different weight, they are equally weighted, so each pixel has
a maximum of nine different labels (in a 323 neighborhood). This approach has
shown some benefits when applied to facial verification, due to the fact that images
become more robust to illumination changes. See Figure 2.4 for an example of

LBP used as a preprocessing step.

Discriminative Features

The discriminative power of a region can be exploited between the region and
its local background. Psychology research results (Shim and Cavanagh, 2004)
suggest that a human vision system does shift its attention among different local
regions during the observation of an object. Which features should be used to
describe an object seems to depend on the context in which the object exists, and

they should change if context changes (Chen and Yang, 2005).

In (Collins and Liu, 2003) a relatively simple on-line feature detector
is proposed: object are compared with their surroundings performing center-
surround histogram analysis. The set of candidate features is composed of linear

combinations of RGB pixel values (see Equation 2.2).

F=w - -R+wy G+ ws- Byw, € [-2;—1;0;1;2] (2.2)

21

Object Tracking

where weights are integer coefficients between -2 and 2. Pruning linear
combinations and all-zero weights, 49 features are left. Comparing center-
surround histograms for each feature, the most discriminative one is chosen as
the current object feature. While it was only applied to color channels, the same
principle may be used for other features like textures or gradient. See Figure 2.5
for an example where the most discriminative features for two different objects in

the same frame of a video sequence are shown.

Figure 2.5: Left column: Frame with labeled object (green box) and background pixels
(red box). Second through fourth columns: weight images corresponding to tuned features
with highest score, median, and lowest variance ratio scores, respectively. ((Collins and
Liu, 2003))

2.1.3 Object detection

Object trackers need a target to follow. While the target can be defined manually,
it can also be detected automatically by a variety of means. Object detection
is an important branch within Computer Vision, and it refers to the process of
detecting visual objects in images. Detected objects may belong to a previously
known class, like pedestrians, cars or faces, although pre-categorical bottom-up
object detectors are able to find interesting image regions that may deserve further

processing.

22

Interest Point detection

While an image contains thousands of pixels, most of them are not significative
per se. Interest point detectors are bottom-up processes that find those points in

an image which local image structure contains rich information (See Figure 2.6)

Since Moravec’s interest operator (Moravec, 1979), which detected corner-
like structures, point detectors have been in constant evolution. Harris corner
detector (Harris and Stephens, 1988) improved Moravec’s detector, and the Shi
and Tomasi detector (also known as Kanade-Lucas-Tomasi or KLT) (Shi and
Tomasi, 1994) is strongly based on Harris’ detectors. Lindenberg introduced
the scale-space representation and automatic scale selection (Lindeberg, 1993)
(Lindeberg, 1998), using the determinant and the trace of the Hessian matrix
to detect center-surround (blob) structures with their own characteristic scale.
Mikolajczyk and Schmid (Mikolajczyk and Schmid, 2001) proposed a multi-
scale Harri’s detector, adding scale invariance and higher repeatability, and Lowe
(Lowe, 1999) proposed a fast approximation to the Laplacian of Gaussians (LoG)
by a Difference of Gaussians (DoG) filter.

While many different detectors have been proposed (Mikolajczyk et al.,
2005) (Mikolajczyk and Schmid, 2005), recent approaches still seem to
outperform previous schemes, like the SURF detector (Bay et al., 2006), in terms
of invariance, repeatability, stability, accuracy and speed of execution.

(a) b)

Figure 2.6: a) Kanade-Tomasi salient points are marked with white dots. b) Circles are
drawn around center-surround salient points, where circle radii represent scale.

23

Object Tracking

Saliency-Based visual attention

Similarly to salient point location, saliency-based visual attention methods
compute saliency maps mimicking how biological attention architectures
supposedly work. According to (Itti et al., 1998), "In order to interpret complex
scenes in real time, intermediate and higher visual processes appear to select
a subset of the available sensory information before further processing. This
selection appears to be implemented in the form of a spatially circumscribed
region of the visual field, the so-called focus of attention, which scans the scene
both in a rapid, bottom-up, saliency-driven, and task-independent manner as well

as in a slower, top-down, volition-controlled, and task-dependent manner.”.

Approaches based on saliency decompose images into different feature
maps (e.g. color, intensity, orientations, textures...) at different scales (see Figure
2.7). Each map is processed independently looking for salient features, which
are finally combined to create a saliency map (Park et al., 2002) (Liu et al., 2007).
These saliency maps can be scanned orderly starting from the most salient regions,

in a way that seems to imitate human visual attention.

Input image .

|
Linear filtering

ll

— _— intensity _—" __—orientations_—

-l

— Input image
(Center-surround differences and normalization

]

i

B

————= Feawre _— maps -
?Tiwz maps) (6 maps};T (24 maps) ;T “..“.
(Across-scale combinations and normalization) .
- | —— Conspicuity - — maps - | — Colors Intensity Orientations

Linear combinations

Saliency map _.— !

]
Winner-take-all Inhibition

of retum

Attended location

Saliency map

(@) (b)

Figure 2.7: a) Saliency-based visual attention model proposed in (Itti et al., 1998). b)
Saliency map computed from an input image.

24

Background subtraction

In many contexts, video cameras are fixed or their motion is limited. Under these
assumptions, the background scene does not change significantly or shows some
regular behavior that can be modeled. If the system knows how a scene looks
like, new objects can be detected as those regions of the scene not belonging to

the background model.

A complete visual comparison of early background subtraction methods
like Eigenbackgrounds, Normalized Block Correlation, Wallflower or Mixture
of Gaussians is presented in (Toyama et al., 1999). Some methods have been
improved, like a new Adaptive Gaussian Mixture Model (Zivkovic, 2004) and
new methods have been proposed, like texture-based LBP (Heikkila, 2006).

Segmentation

Image segmentation consists on dividing an image into significative partitions.
Segmentation, however, is a task that is highly dependent of higher level
processes, and different segmentations may arise depending on prior knowledge
and clustering conditions. In (Bagon et al., 2008), for example, visually
meaningful image segments are found from a given single point-of-interest,

specified by the user.

Bottom-up segmentations must rely in lower level features like image
gradients, generally used in watershed-based segmentations (Meyer and Beucher,
1990), color and textures (Chen et al., 2003). Robust segmentations can be
obtained using clustering techniques based on Mean Shift (Comaniciu and Meer,
2002), Normalized Graph Cuts (Shi and Malik, 2000) and even combining
methods (Tao et al., 2007), although they are computationally expensive.

Segmentation can be used to reduce image information, grouping pixels in
bigger structures known as superpixels (Ren and Malik, 2003). Pixels are not
natural entities, they are merely a consequence of the discrete representation of
images. When grouped together in local and coherent structures, most information

is preserved. These structures may be used to guide higher level segmentations

25

Object Tracking

(b)

Figure 2.8: a) Clustered pixels creating superpixels. b) Image synthesized using its
distance transform maxima.

(Mori et al., 2004) and model searches (Mori, 2005). A fast approach that only
considers color cues, suitable for real-time applications, was presented in (Antén-
Canalis et al., 2007). In that work, superpixels were created from maxima in

distance transform images. Two examples are shown in Figure 2.8.

Supervised Learning

Interest point detectors, saliency-based methods, background subtraction and
segmentation are generally pre-categorical detectors, unless some top-down class-
specific method drives the process (Borenstein and Ullman, 2002) (Borenstein
and Ullman, 2004). Categorical object detectors are able to find instances of
previously learned object classes. These detectors commonly require a set of
positive and negative samples in order to find discriminative features from the

class they are being trained to detect.

Most categorical object detectors compute feature vectors from visual
objects and apply machine learning techniques (Duda et al., 2001) like Support
Vector Machines, Adaptive Boosting, Decision Trees or Principal Component

Analysis, to obtain suitable classifications.

In (Leibe et al., 2008), objects are described using collections of

appearances (codebooks) in structures that include both representative image

26

patches from the most salient object parts and a model of their possible positions
in relation to the object centroid. That way, wherever a known patch is found,
it votes for object centroid location hypothesis. Centroid locations with enough
votes are verified looking for the presence of all those patches that should have

voted for them. This system not only detects but also segments instances of known

objects (see Figure 2.9).
Original Image Interest Paints Matched Codebook Probabilistic
Entries Wating
] []
h -
J . T
*l - T
s E b
_ . ‘e i
) ‘@' m{
M -
] | = n
3D Voting Space
Segmentation & {cantinuaoLs)
L M -
T ’ -
Refined Hypotheses Backprojected Backprojection
(optional) Hypotheses of Maxima

Figure 2.9: Interleaved object categorization and segmentation.

In (Shechtman and Irani, 2007), the internal layout of local self-similarities
is computed from a single training image, which is used to describe a whole object
class. Self-similarity is a powerful mechanism that allows describing objects from
their shape, overcoming color and textures. Even a sketched figure may lead to

the detection of objects with the same shape (see Figure 2.10).

Even when a reliable class detector is available and a certain object class
is robustly detected, object tracking may still be necessary to maintain temporal

coherence and follow object instances as they traverse video sequences.

2.2 Object tracking survey
Object tracking consists on consistently following the position of visual object

instances over time. Tracking can be performed in collaboration with an

object detector algorithm, defining correspondences between object instances

27

Object Tracking

Image
Template

Figure 2.10: Matching local self-similarities across images and videos.

across frames. But also autonomously, iteratively updating object location and

appearance from previous frames, given an initial object instance.

Kernel Tracking

(oo) () (Mo) (e) (e) (o,)
= =
[(Subspace WJ [(Classifier] [[et W] | Minlijr:ii(;tlion W]

Variational Heuristic
Approach Approach

Figure 2.11: Taxonomy of tracking methods, proposed in (Yilmaz et al., 2006).

A taxonomy of tracking methods according to object representations is
offered in (Yilmaz et al., 2006). Tracking approaches are grouped in three big
groups: Point tracking, Kernel tracking and Silhouette tracking, as seen in Figure
2.11. However, most proposed solutions in the literature consist of a mixture of

methods in order to increase robustness.

28

2.2.1 Point tracking

Points are detected by a variety of means, as explained in Section 2.1.3, and
tracked using deterministic or statistical methods that find point correspondences

between consecutive frames.

Deterministic methods define point correspondence cost functions that are
minimized to find one-to-one assignments. Trajectories are generated by a
combination of constraints like proximity, maximum velocity, small velocity
changes, common motion, rigidity or proximal uniformity. Two points in
consecutive frames are considered the same one if their appearance vector is
similar and the trajectory that leads from one to the other satisfies imposed

constraints. See (Yilmaz et al., 2006) for a review of several methods.

In (Sand and Teller, 2006), long-range point trajectories are computed using
pixel appearance and optical flow to estimate dense particle motion. This method
has been successfully applied to video edition in (Goldman et al., 2008). However,
although its results are impressive, two passes through the whole video sequence

are required, not being suitable for real time applications (see Figure 2.12).

Statistical approaches model object movement taking into account noisy
measurements and random perturbations, using predictive filters to estimate object
positions. Correspondences are defined statistically from existing points towards
new object detections, defining relationships between measurements and object
states. The Kalman filter (Kalman, 1960) is a recursive solution to the discrete-
data linear filtering problem that has been extensively used in object tracking.
In order to use the Kalman filter to estimate the internal state of a process
given only a sequence of noisy observations, the underlying linear dynamical
system, process noise and measurement noise must be properly modeled. This
requisites are suitable for object tracking, because many common object dynamics
can be described using Euler’s movement equations. The Extended Kalman
Filter performs recursive non-linear estimations, but the state distribution is still
approximated by a Gaussian random variable, which is not optimal if multiple
detection hypotheses are considered. Kalman filters usually fail if the tracked

object experiences sudden velocity changes.

29

Object Tracking

(b) (©)

Figure 2.12: a) Optical flow, b) Dense particle maps, c) Video labeling from long-range
point trajectories.

The robustness of Kalman filters is improved by the ability of Particle Filters
(Maskell and Gordon, 2002) (Arnaud et al., 2008) to deal with non-linearities and
non-Gaussian distributions. Instead of a using a single Gaussian function, states
are represented by a set of samples, or particles, that shapes the probability density
function (PDF) of the system.

2.2.2 Kernel tracking

Objects defined by a primitive geometric shape like a rectangle or an ellipse may
be tracked using an iterative localization procedure based on the optimization of
a similarity measure, a method known as Pattern Matching. Because this process
is computationally expensive, it is usually limited to a search window around the

last known position.

30

There exists a large variety of pattern descriptors used for tracking. Feature
statistics, like color mean within the defining shape (Fieguth and Terzopoulos,
1997), are probably the simplest descriptors, but they are not very discriminative.
Image patches can be directly used as template windows of pixel intensities
or color values in any color space, explicitly capturing spatial and appearance
information (Shi and Tomasi, 1994) (Edelman, 1999) (Guerra, 2002). However,
they are not robust against deformations and they only represent a single object
view. Color histograms, on the other hand, completely discard spatial information,
being much more robust against local deformations. They have been used for
tracking in many approaches (Comaniciu et al., 2003) (Collins, 2003) (Zivkovic,
2004) (Hager et al., 2004). Spatiograms (Birchfield and Rangarajan, 2005) offer a
solution somehow between templates and histograms, adding spatial information
to histograms by incorporating spatial means and covariances to each color
histogram bin. A similar solution is offered in (Zhao and Tao, 2009), using
simplified color correlograms. A combination of color histograms, correlograms,
LBP textures and motion is used in (Takala and Pietikainen, 2007) to track

multiple targets.

Other common region descriptors include Cross Correlation, Moment
Invariants, Steerable Filters, Differential Invariants, Complex Filters and Scale
Invariant Feature Transform (SIFT) descriptors. An analysis of these methods
in (Mikolajczyk et al., 2005) concludes that SIFT (Lowe, 1999), which
describes local features using sets of orientation histograms, outperforms all other
descriptors. However, SIFT is still computationally expensive and can only be
applied to real time tracking of previously detected interest points (Zhou et al.,
2008). DAISY, a promising fast local descriptor based of SIFT and GLOH, is
proposed in (Tola et al., 2008). It is apparently much more robust than previous
methods, and it can be computed much more efficiently for dense matching

purposes.

An object can be defined by multiple regions. In (Adam et al., 2006), several
rectangular sections are described by histograms and combined to track objects
under severe partial occlusions. In (Ren and Malik, 2007) objects are defined by

an ensemble of triangular regions computed from a Delaunay triangulation, and

31

Object Tracking

tracking is performed in a figure/ground segmentation-tracking cycle.

Figure 2.13: Mean shift tracking, proposed in (Collins, 2003).

Predictive filters are not exclusively used for point tracking. In (Yang
et al., 2005), a particle filter tracks objects characterized using color and edge
orientation histogram features. Particle filters are especially handy when dealing
with multi-modal probability density functions. However, many works use a
common mode-seeking algorithm known as Mean Shift, which has achieved
considerable success in object tracking due to its simplicity and robustness (see
Figure 2.13). It is a gradient climbing, non-parametric technique first proposed
in (Fukunaga and Hostetler, 1975) (Cheng, 1995) that finds the peak of a given
distribution. Camshift (Bradski, 1998) was proposed as a mean shift modification
that adapts dynamically to the probability distribution it is tracking, dealing with
appearance and scale changes. Current trends indicate a shift towards Particle
Swarm Optimization as a fast and robust mode seeking process (Thomas and
Kambhamettu, 2006). It will be explained in detail later.

2.2.3 Silhouette, Contour tracking and Flexible models

Silhouettes of objects and their contours are powerful clues that allow the
sequential segmentation and tracking of deforming objects or regions of interest
(ROI). Deformable objects like human bodies or hands, or objects suffering shape
changes due to rotations, like a turning car, show highly variable shapes that can
be defined more robustly using their contour or silhouette than using a single rigid

pattern.

Silhouette tracking is similar to template matching. Known shapes are
matched against an image, looking for the extreme value of a similarity function.
The Hausdorff distance (Huttenlocher et al., 1993), the Chamfer distance

32

(Borgefors, 1988) or Shape context (Belongie et al., 2002) are used to define
distances between point sets that allow constructing correlation surfaces from
which an extremum is selected as the new object position and shape. Based
on the Kalman Filter, the Condensation algorithm (Isard and A., 1998) tracks
outlines and features of foreground objects defined by B-splines, allowing contour

deformation up to a certain degree.

Figure 2.14: Object contour tracking using level sets, proposed in (Yilmaz et al., 2004).

Contour tracking methods follow object boundaries as they translate and
deform between frames. Active Contour Models, known as Snakes, were
introduced in (Kass et al., 1988). Contours are defined by splines that
continuously evolve to adapt to object boundaries. Similar solutions are applied
to segmentation and tracking, like the Level Sets approach (Yilmaz et al., 2004),
shown in Figure 2.14. Contour control points may also include appearance
information as proposed in the Active Shape Models (Cootes et al., 1995) (Davies
et al., 2001) and Active Appearance Models (Cootes et al., 1998).

33

Engineered Swarms

HE ability of swarming creatures to achieve complex tasks no matter their
T own individual simplicity has already inspired many swarm-based solutions
in different fields. Swarm intelligence, an expression that was introduced by
Gerardo Beni and Jing Wang in 1989 (Beni, 1989) in the context of cellular robotic
systems, is currently considered a type of artificial intelligence based on the
collective behavior of decentralized, self-organized systems. Swarm Intelligence
may be represented by the concept of Synergy, meaning “the interaction or
cooperation of two or more organizations, substances, or other agents to produce
a combined effect greater than the sum of their separate effects”. Or, as a famous
quotation attributed to Aristotle states, The whole is greater than the sum of the

parts (von Bertalanffy, 1975).

But before the ability of insect colonies to solve optimization problems was
modeled and applied to solve numerical problems (Dorigo and Stiitzle, 2004),
many systems already existed showing self-organizing, evolving and emerging

behaviors.

35

Engineered Swarms

3.1 Artificial Life

A theory has only the alternative of being right or wrong. A model
has a third possibility; it may be right, but irrelevant.

Manfred Egan

A computational model attempts to simulate a particular system described
mathematically and/or algorithmically. Since the late 1940’s, when John von
Neumann himself postulated the potentials of Artificial Life, many systems have
simulated the behaviour of living creatures in their ecosystems. One of the first
examples of a system with surprising emergent properties is Conway’s Game
of Life, a cellular automaton created by John Horton Conway in 1970 that

successfully applies von Neumann’s ideas in a simplified setting.

Conway’s Game of Life is the oldest and simplest example of a complex
environment showing emergence, and it can be considered the precursor of bio-
inspired computational models. An infinite bidimensional matrix is defined,
where each cell has two possible states, live or dead. In each simulation step,
every cell interacts with its eight neighbors, and its own state is defined by the
perceived number of living neighbors. Underpopulation and overcrowding kills
a cell, but they revive if a certain number of neighbors are alive. Even from a
random initial state, where each cell is set to live or dead randomly, different
stable cell configurations arise after a few iterations. As they stay still, oscillate or
even translate, existing configurations may interact and evolve, being destroyed or

creating new configurations. Some structures are shown in Figure 3.1

Artificial Life (alife) studies the simulation of any aspect of life, as through
computers (soft alife), robotics (hard alife), or biochemistry (wet alife). Since
the beginnings of computation, the possibility of creating artificial life with a
computer program has been a daunting challenge. May a living creature be
described with some thousand lines of code? The Birth-Growth-Reproduction-
Death cycle has been simulated in virtual creatures that wander in virtual worlds,

interacting with their environment and other creatures, evolving and successfully

36

Figure 3.1: Conway’s Game of Life

representing simple ecosystems. But whether these creatures are alive or not still

generates debate.

Alife simulates life at different scales. Some systems study ecosystems
as a whole, simplifying creature movement mechanics in order to analyze the
phenomena of living systems. Tierra (Ray, 1991), Cosmos (Taylor, 1997) and
Avida (Ofria and Wilke, 2004) are examples of systems designed to analyze

biologic processes, interactions between synthetic creatures and their evolution.

Other simulations focus on the complex morphology of single virtual
creatures. In (Sims, 1994), DNA-like codes were used to create a genotype of
joints, limbs and actuators, producing different locomotive abilities. A population
of several hundred of virtual creatures was created within a supercomputer. Each
creature was tested for its ability to perform a given task like swimming in
a simulated water environment: those that were most successful survived and
reproduced, adding their virtual genes to the new population. Not surprisingly,
after some time, creatures with successful behaviors emerged. Some even showed
a strikingly resemblance to real life animals, both in their morphology and their

movements, like the snake-like one shown in Figure 3.2.

3.1.1 Steering Behaviors: Boids

Alife studies complete synthetic ecosystems and organisms, evolution and life

processes. As previously stated, life is simulated at different scales and

37

Engineered Swarms

Figure 3.2: Evolved digital creature (Sims, 1994).

complexity levels. While simulations may focus on low level features like
the neural networks that govern virtual creatures or the DNA-like structures
which alteration defines new phenotypes, life-like behaviors can be obtained in
a true swarm intelligence manner from the unexpected interactions of multiple

individuals following simple rules.

Back in 1986, Craig Reynolds proposed a computer model of coordinated
group motion largely independent of the particulars of the individual’s means of
locomotion (Reynolds, 1987). He called his virtual creatures Boids, and their basic
flocking abilities where defined by just three rules, named Cohesion, Alignment
and Separation, using vector arithmetic. Thanks to these three rules, each boid was
able to maneuver according to the positions and velocities of nearby flockmates
(see Figure 3.3). Boid movement rules were latter supported by experiments in
real fishes (Partridge and Pitcher, 1980).

Movement rules simply define velocity vectors. The cohesion rule computes
a vector from the position of a boid towards the perceived centroid of nearby
swarm mates (that is, the average position of all neighboring boids). The
alignment rule is the average of neighboring boids’ velocities. The separation
rule is a vector from the centroid of all flockmates moving at close range towards
the position of the boid. In order to obtain a natural a flocking behavior, these
three rules are weighted and added to a fraction of the current boid’s velocity, and

then its position is updated. Obstacle avoidance can be included in this scheme

38

'3:-.\ A h) |

YA RN E/ el
(b) (©)

(a)

Figure 3.3: Reynolds’s boids follow three basic steering behaviors, which lead to realistic
flocking movement. a) Separation: steer to avoid crowding local flockmates. b)
Alignment: steer towards the average heading of local flockmates. c¢) Cohesion: steer
to move towards the average position of local flockmates.

by simply adding a fourth rule computing a vector that moves a boid away from

nearby obstacles.

The following expressions define how a given boid p would move in a

system with n rules:
Up(t) = wo-vp(t—1)+ 3.1)

(
wy - (ruleg) +
wsg (

wy - (ruley,)

,(t) = z,(t — 1)+ v,(t). (3.2)
where:

e v,(t), v,(t — 1) are the boid’s velocity at current and previous iteration.
e 1,(t), x,(t — 1) are the boid’s position at current and previous iteration.

e rule;..rule, are flocking behaviors, vectors computed to satisfy certain

conditions: cohesion, separation, alignment, leader following, random

39

Engineered Swarms

movement...
e () is the weight that controls momentum.

e w;..w, are weights that control the influence of each rule.

The beauty of this model lies in the unpredictable nature of emerging group

dynamics. As Reynolds states,

Flocking is a particularly evocative example of emergence: where
complex global behavior can arise from the interaction of simple local

rules.

Indeed, Reynolds’s boids wander in their virtual environment and do look
like a swarm, a flock, a school or a herd, depending on the weights assigned
to each rule. Combined with computer generated graphics, the effect is truly
attractive, and it has been successfully applied to computer animations. Tim
Burton’s Batman Returns (1992) featured simulated bat swarms and penguin
flocks that were based on Reynolds’s boids; Disney’s The Lion King (1994)
included a wildebeest stampede that also used boids to guide dozens of animals in
their frenzied rush; more recently, in The Lord of the Rings trilogy (2001-2003), a
similar technology was applied to battle scenes. Their use is nowadays widespread

in visual media when coordinated group dynamics are needed.

The boids model allows additional rules to be added, defining interactions
with other virtual creatures and their simulated environment. Boids may follow a
leader, flee from predators, look for food... It is just a matter of including new rules
to the original set using vector arithmetic. In Figure 3.4 boids follow a crowded

path and cross a gate avoiding collisions.

3.2 Bio-inspired Computing

Bio-inspired Computing relies on the fields of Biology, Computer Science

and Mathematics, and it is tightly related to Artificial Intelligence, involving

40

(a) (b)

Figure 3.4: Different steering behaviors combinations lead to complex group dynamics.
a) Crowd path following, which combines path tracking and separation, and b) Queuing
(crossing a doorway), which combines seek, avoid and separation.

Connectionism, Social Behaviour and Emergence. Unlike traditional Al, where
problems are solved from the programmer’s perspective, relying on his/her
knowledge and ability to design a suitable algorithms, bio-inspired computing
applies solutions found in nature to problems similar to the one being tackled,

using the analogy principle.

The corpse gathering strategy shown by Messor Sanctus ants explained in
Chapter 1 (see Figure 1.2), can be easily mimicked in a virtual environment with
independent and simple agents. They are programmed to walk around randomly,
picking objects with a probability that depends on the presence of nearby objects
and droping them next to other objects. Figure 3.5 shows how from an initial
setting where objects are regularly placed on the virtual field, a low number of
piles appear after some simulation steps. Indeed, this corpse gathering behavior
has been successfully applied to data clustering (Handl et al., 2003).

Is it possible to apply biologic metaphors to solve numerical problems?
Indeed, what eusocial animals do constant and efficiently is solving optimization
problems: from task allocation to finding shortest paths between two points,

insects apply their sheer numbers and decentralized control to find optimal

41

Engineered Swarms

= o < O
ol ol =
o o o e o e oa) oo oo
(4) = o
o e O of0 =" O
@ L= >O<>O<®
o o o B o o s =G| WG]
= © = = o
) oo oo
va) o ok () oo o
2l ea) @ O
o o o of oo o o e

Figure 3.5: The corpse gathering strategy followed by Messur Sanctus ants (Jost et al.,
2006) can be simulated with simple and independent agents.

solutions.

But even before insects appeared, evolution itself managed to find optimal
solutions to adaptation and speciation, modifying genotypes, and thus phenotypes,

in ways that permitted species to succeed in their environment.

3.2.1 Genetics

Biologic evolution has inspired a whole branch within Artificial Intelligence,
called Evolutionary Computation or Evolutionary Algorithms, that aims to
solve optimization and search problems using the same principles of evolution:

selection, reproduction and mutation.

Genetic Programming proposes pools of randomly initialized computer
programs that have a certain goal. Using appropriate operators, the best
programs in each generation are evaluated and suffer crossovers and mutations
(reproduction and variation), creating new programs for the next generation that
will eventually improve their output (Koza, 1992) (Koza, 1994) (Koza et al., 1999)
(Koza, 2003).

Genetic algorithms (Holland, 1992) (Mitchell, 1998), categorized as global
search heuristics, are used to find solutions to optimization and search problems.
Genetic algorithms are a particular class of evolutionary algorithms that use
techniques inspired by evolutionary biology such as inheritance, mutation,
selection, and crossover (also called recombination), combining exploration

(mutation) and exploitation (crossover). Genetic Algorithms use a population

42

of abstract representations (called chromosomes or the genotype of the genome)
of candidate solutions (called individuals, creatures, or phenotypes) to an

optimization problem.

Evolution happens in generations. In each one, individuals are first
evaluated using a fitness function. Then, they are stochastically selected
and crossed to populate the next generation with their offspring, which may
randomly mutate. The new population is then used in the next iteration of the
algorithm. Commonly, the algorithm terminates when either a maximum number
of generations have been produced or a satisfactory fitness level has been reached.
Parallelism is implicitly introduced by genetic algorithms, as each individual can

operate independently.

The three most important aspects of using genetic algorithms are the
definition of the fitness function, the definition and implementation of the
genetic representation and the definition and implementation of the genetic
operators. Beyond that, many different variations may be implemented to improve

performance, like finding multiple optima (species) if they exist.

It is important to understand that the nature of such algorithms does not
guarantee success. Being a stochastic system, the genetic pool may be still too far
from the solution when the algorithm terminates, or a too fast convergence may
halt the evolution process in a local extremum. These algorithms are nevertheless
extremely efficient, and are used in fields as diverse as stock exchange, production

scheduling or programming of assembly robots in the automotive industry.

3.2.2 Ant Colony Optimization

Ant Colony Optimization (ACO) was initially proposed by Marco Dorigo in
1992 in his PhD thesis (Dorigo, 1992), and it is still being studied and improved
(Dorigo and Stiitzle, 2004). It can be considered one of the first applications of
Swarm Intelligence to problem solving. In his work, Dorigo was inspired by the
pheromone trails used by ants to create minimum paths towards food sources. He

proposed a probabilistic technique for solving computational problems which can

43

Engineered Swarms

be reduced to finding good paths through graphs. However, the original idea has
since diversified to solve a wider class of numerical problems, drawing on various

aspects of the behavior of ants.

The original ACO algorithm populated graphs with virtual ants that walked
around mimicking their real-life counterpart behaviour. In the real world, ants
initially wander randomly, and upon finding food return to their colony while
laying down pheromone trails. If other ants find such a path, they are likely to
stop travelling at random and follow the trail instead, returning and reinforcing it
if they eventually find food. Over time, however, pheromones trail evaporate, thus
reducing their attractive strength. In ACO, pheromone lay and evaporation rates
were modeled and the attraction of ants by pheromones was statistically defined,

creating a realistic simulation of foraging behavior.

When an ant finds a solution, pheromone is updated in the travelled graph

path using the following expression:

Ti,j == (1 — p) . Ti,j + ATi,j (33)

where:

e 7, ; is the amount of pheromone on a given edge ¢, j
e p is the pheromone evaporation rate

e Ar; ; is the amount of deposited pheromone, typically given by

(3.4)

ij

. { 1/Ly if ant k travels on edge i, j

0 otherwise

where Ly is the cost of the £ ant’s tour (typically the path’s length)

Ants traverse graphs choosing edges with a probability given by the

following expression:

44

_ TJ)(nfj)

e
YR

| (3.5)
)0

where:

7; ; 1s the amount of pheromone on a given edge 4, j

e «is a parameter to control the influence of 7 ;

1;,; 1s the desirability of edge ¢, j, typically 1 / d; ;

B is a parameter to control the influence of 7, ;

Some random movement factor can be also included to promote searches.

Ant colony optimization algorithms have been applied to many
combinatorial optimization problems, ranging from quadratic assignment to
protein folding or routing vehicles and a lot of derived methods have been adapted
to dynamic problems in real variables, stochastic problems, multi-targets and
parallel implementations (Dorigo and Stiitzle, 2004). In practice, the use of
an exchange of information between agents via the environment (Stigmergy) is

deemed enough for an algorithm to belong to the class of ant colony algorithms.

ACO, like Genetic Algorithms, is a stochastic population-based scheme.
The main advantage of ACO over Genetic Algorithms is the ability of virtual ant
colonies to adapt to dynamic environments (Ramos and Almeida, 2000).

3.2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic, population-based algorithm
for problem solving. First described in 1995 by James Kennedy and Russell C.
Eberhart (Kennedy and Eberhart, 1995), although still very popular (Kennedy and
Eberhart, 2001) (Dehuri and Cho, 2009), it was inspired by the social behavior
of animal groups and the works of Reynolds (Reynolds, 1987) and Heppner

(Heppner and Grenander, 1990). In PSO, however, group dynamics are not

45

Engineered Swarms

modeled to simulate life-like creatures. Instead, PSO was designed explicitly
to find solutions to optimization problems using social-psychological principles.
PSO could be considered a specialized boids system flying in the solution space

of a given problem.

PSO shares many similarities with evolutionary computation techniques
such as Genetic Algorithms (GA) and Ant Colony Optimization (ACO). The
system is initialized with a population of random solutions and searches for
optima by updating generations (iterations). However, unlike GA, PSO has no
evolution operators such as crossover and mutation. Instead, social influence and
social learning enable particles to maintain cognitive consistency. Each particle
represents a feasible solution, similarly to individuals in GA, flying through the
multidimensional solution space. As individuals share their findings about a given

problem, they reach an optimal solution as a group.

The swarm is modeled as a group of particles that have a position, a velocity
and a memory. This memory stores the best position of a particle so far, and
knowledge of the global and/or neighborhood best solution found by swarm mates
(lbest, gbest and nbest). Members of a swarm communicate good positions to
each other and adjust their own position and velocity accordingly, moving through
the solution space towards a better position. In its simplest form, a particle’s

update equations are similar to those used by boids (see Equation 3.1):

op(t) = w-vp(t—1)+ (3.6)
o1 -7 - (gbest — @, (t — 1)) +
@y - 1% - (Ibest, — @, (t — 1)) +
@3- 7% - (nbest, — @, (t — 1))

Tp(t) = ot — 1)+ 0p(h). (3.7)

where

e w is the momentum weight, which value should be slightly less than 1.0.

46

e gbest is the best position found by any member of the swarm so far.
e [best), is the best solution found by particle p so far.

e nbest,, not always present, is the best solution found by swarm members in
a neighborhood around p so far.

e 1,3 represent the “social” component and ¢y the “cognitive”
component. Their values are usually around 2.0.

e 71,75 and r3 are random vectors with each component being generally a

uniform random number between 0 and 1.

Figure 3.6: Particle Swarm Visualization : A randomly generated particle swarm of 12
particles attempts to find the global maximum on a 3D landscape. Yellow and green

lines show previous and current movements, respectively. Note that, although this swarm
overcame local maxima, this ability depends on the current implementation.

Compared to Genetic Algorithms, the advantages of PSO are many. It is
easier to implement and there are fewer parameters to adjust, for instance. PSO
can be seen as a basic search strategy that can be adapted as needed for the
problem at hand. The adaptability of PSO is considered a strength over other
robust evolutionary optimization mechanisms. One version, with slight variations,
works well in a wide variety of applications, as well as for applications focused

on a specific requirement.

Although its original formulation prevents PSO particles from adapting to

dynamic functions, different approaches have been proposed to overcome this

Project Computing, 2004. http://www.projectcomputing.com/resources/psovis/index.html

47

Engineered Swarms

problem (Hu and Eberhart, 2002). Another common modification consist on
adding a random velocity vector, allowing particles to overcome local extrema

thanks to stochastic exploration.

Over the years, many heuristics and variants determined to be better with
respect to convergence speed and robustness, introducing variations like self-
tuning parameters (Zhang et al., 2008). Very frequently, the values of ; are
taken to decrease over time in order to facilitate exploitation over exploration in
later states of the search. There are also other variants of the algorithm, such
as discretized versions for searching over subsets of Z" rather than R™ (Consoli
et al., 2007). Significant, non-trivial modifications have been developed for multi-
objective optimization of problems where it is believed or known that there are

multiple global minima which ought to be located (Dehuri and Cho, 2009).

The first practical application of PSO was in the field of neural network
training and was reported together with the algorithm itself (Kennedy and
Eberhart, 1995). Many more areas of application have been explored ever
since, including telecommunications, control, data mining, design, combinatorial
optimization, power systems, signal processing, and many others. To date,
there are hundreds of publications reporting applications of particle swarm
optimization algorithms. For a review, see (Poli, 2008). Although PSO has
been used mainly to solve unconstrained, single-objective optimization problems,
PSO algorithms have been developed to cope with constrained problems, multi-
objective optimization problems, dynamically changing landscapes and multiple
solutions. For an in-depth review, see (Engelbrecht, 2005)(Kennedy and James,
2007).

3.3 Swarms in Computer Vision

Swarm Intelligence systems are typically made up of a population of
relatively simple individuals interacting locally with one another and with their
environment, allowing the emergence of collective behaviors. Decentralization

and thus robustness due to swarm members expendability, relative simplicity, low

48

elemental computational costs and possible parallel implementations are the main
advantages of this approach, leading to systems which abilities transcend those of

individuals.

Many successful SI techniques have been developed during last years,
including Ant Colony Optimization (ACO) (Bonabeau et al., 1999) and Particle
Swarm Optimization (PSO) (Shi and Eberhart, 1998) (Hu et al., 2004) (Kennedy
and Eberhart, 2001). They were originally designed to solve optimization
problems, because that is precisely what social insects do best, but they have been

also applied to computer vision tasks (Owechko and Medasani, 2005).

Digital images are interesting habitats for virtual swarming creatures. They
provide meaningful environments from which swarming agents may extract useful
information. Ant colonies inhabiting digital images are studied in (Ramos and
Almeida, 2000) and (Ramos et al., 2005), where the colony adapts the size of its
population according to the dynamic structure of three dimensional maps defined
by grayscale images. Although single individuals only deal with local pheromone
trails, pheromonal fields represent the memory of the recent history of the colony
(see Figure 3.7). They are used to initialize a Watershed algorithm for image

segmentation.

Figure 3.7: A digital ant colony adapts its population size according to the underlying
image. After 100 iterations the image changes from Einstein to a Map, and the changing
pheromonal field shows how the colony is able to reconfigure its own knowledge about
the habitat it inhabits.

Swarms and ant colonies have been proposed for color clustering (White
et al., 2004), data clustering and image segmentation (Abraham et al., 2007)
(Ouadfel and Batouche, 2007). But not only ants inspire solutions. In (Bourjot
et al., 2003) the nest building abilities of certain pseudo-social African spider

are modeled and applied to region segmentation, and the artificial fish swarm

49

Engineered Swarms

algorithm is also used for segmenting images in (Jiang et al., 2007). A general
decentralized multi-agent system for data discovery and image enhancement is

presented in (Jones and Saeed, 2007).

3.3.1 Swarms for object tracking

Object tracking in video sequences is an appropriate workbench for swarming
solutions. Where traditional tracking methods may fail due to the unreliable nature
of image matching functions, population-based methods may succeed thanks to

the collaborative effort of many individuals.

In (Kobayashi et al., 2007), PSO is used to track objects using color features.
Particles look for positions in the image that match a target color histogram.
However, only one sequence is tested in ideal conditions, and the tracked object,

a green ball, is extremely different from its surroundings.

In (Zheng and Meng, 2007), PSO is used to track the location of a
target window between frames in a video sequence. Particles represent window
hypothesis defined by their position, width, height and orientation. Using a fitness
function based on the appearance histogram of the last known window, particles in
a new frame evaluate and update their position until the new location, orientation

and scale of the tracked object are found.

Similarly, in (Zhang et al., 2008), PSO particles are characterized by a
state that includes 2D translation and four deformation parameters. Particle
fitness is evaluated using an appearance model based on a Mixture of Gaussians
that describes the image region represented by the particle. Additionally, the
traditional PSO algorithm is improved adding temporal coherence, a key factor
in object tracking. PSO parameters are also changed adaptively according to the
fitness value of particles and the predicted motion of the tracked object, instead
of using constant parameter values. In both works the swarm finds the region that
optimizes the fitness function in a new frame in a mode-seeking process similar

to mean-shift, effectively tracking the object in short sequences.

Steering behaviors are used in (Kolsch and Turk, 2005) for tracking a flock

50

Figure 3.8: Sequential Particle Swarm optimization for visual tracking (Zhang et al.,
2008). Particles (white rectangles) converge to the location of the tracked object.

of features in a scheme more similar to Reynolds’s boids. Flocking is used to
choose which KLT features should be tracked from frame to frame. Movement
rules dictate that no two features must be closer to each other than a threshold
distance (which would be similar to the Separation rule for Boids), and that
no feature must be further from the median than a second threshold distance
(Cohesion rule). Unlike in PSO and Boids, particles in this approach are abruptly

relocated onto good color spots that meet flocking conditions.

Figure 3.9: Tracking a flock of KLT features. Small dots represent KLT features. Their
median position is represented by the big dot.

51

Tracking Swarms

solution based on a Swarm Intelligence metaphor with a prey-predator
A analogy is proposed for real time object tracking in video sequences.
Based on boids, the seminal proposal by Craig Reynolds (Reynolds, 1987),
particles fly in the bidimensional space defined by digital images using combined
image features to guide individual movement. Object tracking emerges from the

interaction between predator particles and their dynamic environment.

4.1 Introduction

Tracking in Computer Vision, as seen in Chapter 2, is the process of locating
and following moving objects as they evolve through time and space in video
sequences. Traditional tracking approaches are based on the use of models or
templates that represent target features in the spatio-temporal domain and involve
the use of two main processes: matching and updating (Yilmaz et al., 2006).
Matching corresponds to the process in which a reference template is searched
for in an input image to determine its location. Template updating is related to
the process of replacing the template that represents the target in such a way that
it does not drift away from the object (Matthews et al., 2004) due to possible

appearance changes during a sequence.

Tracking moving objects becomes critical in multiple computer vision tasks,

53

Tracking Swarms

such as vision based interfaces, visual surveillance or perceptual intelligence
applications. At present, there are still obstacles in achieving all-purpose
and robust tracking systems. Different issues must be addressed in order to
carry out an effective tracking approach: dynamic appearance of deformable
or articulated targets, dynamic backgrounds, pursuing different target motions
without restriction, changing lighting conditions, camera (ego) motion and real-

time performance, among others.

4.2 Predator Swarm Model

In (Antén-Canalis et al., 2006c) a precategoric visual tracking approach based in
a Swarm Intelligence paradigm was presented, defining the tracking problem as
a predator-prey metaphor in the ecosystem created by a video sequence. Inspired
by the individual activity of social insects and distributed behavioral models
(Reynolds, 1987), tracking is understood as an emergent property of the swarm of
predator particles as they individually chase prey pixels across frames. Particles
look for prey pixels guided by the intensity of their scent (a combination of
image features). Neither complete aspect based templates of the visual target
nor dynamical models of the object’s motion are required. In (Anton-Canalis
et al., 2006b) an improvement was proposed, broadening the swarm’s perception

abilities in order to strengthen robustness and increase stability.

4.2.1 Feature Detection Network

In the initial frame of a video sequence a predator swarm is placed over the herd
of prey pixels that will be tracked. Each particle obtains information of the video
sequence from a set of feature maps F = f1, fa.. fm created by a Feature Detection
Network. This network is composed by a number of Feature Detectors F'D; that
extract and transform values from visual data or feature maps in order to create
a new feature map (see Figure 4.1). Without loss of generality, all feature map

values should be normalized to range 0..1.

54

Feature detection netmok Fearceived features

Images Swuarm
FL —— 0,00
FI T iz o o O
P a o] GC)
hic]
|| FDz | |
4
Calr
FD3 5 F=1If112 13 14,15, .. fm}
fin
FOn

Figure 4.1: Swarm particles get information from feature maps, which are computed from
images or created by particles themselves.

These features characterize the scent of a prey, which is an abstraction for
the combination of transformed image values that particles will chase. From
pixel intensities to maps created by the same particles, like pheromonal fields,

any possible image transformation can be considered.

Feature maps can also be used to modulate prey scents, defining their
intensity. That way, preys with a certain scent become more attractive if they
meet certain conditions (e.g. they are placed on an image region where movement
is perceived, where a figure stands out from the background or where pheromone

deposits have higher concentration levels).

4.3 Swarm Definition

More formally, given a Particle Swarm S inhabiting a video sequence from which
a set of feature image maps F are extracted for each frame, each particle p is a
4-tuple: p =< @, U, Cp, sfp > p € S where:

1. Z,: Position vector in the search space.

2. 7, Velocity vector.

55

Tracking Swarms

3. ¢p: Particle’s comfort, a measurement of its tracking performance in the
current time step, with a value between 1.0 (best) and 0.0 (worst). It will be

explained in detail later.

4. sfp: Scent list, a list of desired prey scents, obtained from F. Tt stores a

description of the object to be tracked.

The swarm as a whole is characterized by its centroid and its velocity. Both
values are computed from the weighted average of each particle’s position and

velocity, using ¢, as a weighting factor.

Tracking emerges from the observation of the trajectory described by the
swarms’ centroid S, and its velocity Sy (see Equation 4.1 and Equation 4.2). Each
particle contributes to the localization of the tracked object independently, and
its contribution is proportional to its tracking performance. Those particles with
better comfort values, that is, particles which are closer to their targets, become
influential leaders. They are much more relevant to the global behavior of the

swarm than those particles that may have lost their prey.

1. Swarm’s centroid, which is the Swarm’s weighted center of mass:

_ prp'cp

Se
Zp Cp

Vp €S (4.1)

2. Swarm’s velocity, which is a weighted average of all particle’s velocity

vectors: .
_ Ep Up " Cp

Sy
Zp Cp

VpeS 4.2)

Figure 4.2 depicts an example of a recently created swarm that perceives
image information using an RGB color map. The swarm is represented as a grid

of particles that hovers over the image.

While each predator particle looks independently for interesting preys in its
vicinity, trying to move closer to them, it will also try to keep up with the rest of

the group following a set of Boid-based flocking rules.

56

Predator particle p Swarm at time t

Xp= (167,48)) 100 particles
Vp=(0,0)) Sc=(171,52)
Slp=((117,184,83), (), ()) Sv=(0,0)

Cp - T.O

Figure 4.2: A predator swarm is placed over the herd of prey pixels that will be tracked.
Each particle is represented by the color of the pixel it will chase. Details for the first
particle are shown in the upper-left corner: position, velocity, list of features (RGB
triplets) and comfort. In the upper-right corner, some global swarm features are shown,
including the number of particles, the swarm’s centroid and its velocity (which is zero
because it is the initial frame).

4.4 Particle Movement Rules: tracking and flocking

Reynolds’s steering behaviors (Reynolds, 1987) are movement rules that define
a maneuver strategy for each member of a group of mobile entities. Flocking,
Path Following or any other model can be obtained from the linear combination
of many steering behaviors. The present tracking swarm was inspired by boids,

so particles move following a similar scheme (see Chapter 3, Section 3.1.1).

Swarm movement and preying behavior, and thus tracking activity, emerges
from the interaction of each particle moving in response to neighboring preys
(pixels) and the rest of the swarm. For each particle, a first movement rule called
Hunt defines the tracking behavior, moving particles towards the best prey in
their neighborhood. Then, flocking is integrated using a modified version of the
three rules that define Reynolds’s boids flocking model: Cohesion, Alignment and

Separation.

For each predator particle p, p € S, movement rules are defined as follows:

57

Tracking Swarms

4.4.1 Rule 1: Hunt

The hunt rule defines a vector towards the location of the most interesting preys.
This rule is added to the three basic steering behaviors in order to give boid
swarms the ability to track objects in video sequences. Following this rule, the
swarm perceives and reacts to visual information through each particle’s Feature
Detection Network. Particles analyze their vicinity in the current image and head

towards the most interesting preys. Thus, it acts as a basic local search.

Preys are found in an nan neighborhood N around p, where they are defined

as ¢ =< I, 5, >,q € N, being &, the prey’s position and 3, its scent.

If 3, represents the interest that prey ¢ creates in predator p, that is, the
similarity between a particle’s list of tracked features s7p and a given pixel’s set of

features, the following expression defines the hunting movement velocity:

Z(fq - fp) ’ qu
VP =1 Vge N (4.3)

Z Bap

q

How to compute 3, will be explained in detail later. This rule also
obtains a particle’s comfort ¢, from the interest created by the best prey in the
neighborhood. A particle placed near suitable preys will get higher comfort

values, and thus this variable measures tracking performance.

Cp = rgle%i{ﬂqp} 4.4)

Figure 4.3 depicts the velocity vector computed by this rule.

58

Predator’s taste

10x10 Swarm

Image frame Predator’s 1st rule’s vector
neighbourhood

Figure 4.3: A particle (shown by a red dot) analyzes its neighborhood looking for preys
that suit its taste. Arrow sizes on the right-most image are proportional to 3,,. The

resultant of Rule 1, represented by a green arrow, points towards the region containing
more interesting preys.

4.4.2 Rule 2: Cohesion

This rule defines a vector from the particle’s position Z, towards the perceived
weighted center of mass of flockmates, /i:

E Ty - Cp

ﬁ:rz—,V’FES,T#p
Cr
VP =ji—2Z, (4.5)

Cohesion avoids scattering, keeping swarm members together. It acts as an
exploitation strategy in the tracking process. This rule differs from Reynolds’s
Cohesion in that positions are weighted. Flockmates with higher c,, those that

consider they are properly tracking their target, are more influential leaders.

59

Tracking Swarms

4.4.3 Rule 3: Alignment

This rule computes the average velocity of flockmates, as perceived by particle p:

g Uy« Cp
_ T
26
T

Particles will imitate flockmates’ movement, so this rule acts like a voting system

‘_/Z;p NreS,r#p (4.6)

where the majority decides where the swarm should head to. Once again, this rule
differs from Reynolds’s Alignment in that velocities are weighted, being those

flockmates with higher ¢, more influential.

4.4.4 Rule 4: Separation
Computes a vector that moves particle p away from flockmates that are too close:

VE="d, = & Vr €S, # p,d(F,,7,) <n-05 (47

Being n the neighborhood size and d() the Manhattan distance between both
particles. This rule avoids crowding, forcing particles to cover wider spaces and

favoring exploration.

4.4.5 Final particle displacement

The four resultant velocities are weighted and added to a fraction of the previous
iteration velocity for each particle. Finally, positions are updated according to

new velocities:

60

4
B(t) = wo- Gt —1)+ Y wi- VP(B),
i=1
fp@) = fp@ - 1) + Up(t) (4.8)

This expression is, effectively, a generalization of the one used in Particle
Swarm Optimization (see Chapter 3, Section 3.2.3), where only three rules are
considered. It is, however, the same expression used in the classic Boid system

(see Chapter 3, Section 3.1.1). Figure 4.4 depicts how rules are combined.

Hunt
Cohesion

el

/'ﬁ

Alignment

Figure 4.4: The four steering behaviors plus a certain momentum define a particle’s
velocity on each time step.

4.5 Constants and weighting strategies

The number of required weights and constants is a major drawback of this method,
although they are part of its versatility. There are many parameters that must be
chosen and tuned to achieve successful tracking, but once they are determined the

swarm behaves similarly in most situations. Three constants are defined:

e wy, momentum, is a fraction of previous velocity. It should be a low value.
Otherwise, particles may build up velocity and start acting erratically. wy =
0.1

e n, measured in pixels, defines the search area around a particle. If it is too

61

Tracking Swarms

small, particles may not be able to keep up with fast moving objects. If it is

too big, search becomes computationally expensive. n = 11

. ||37p|| = 1, the size of the scent list. It limits the number of scents that a

particle stores. ||||vecsl,|||| =1

While the current approach is not taking advantage of the scent list because
it currently contains a single feature vector, it may be used in a future updating
mechanism to store the most interesting appearances of a particle’s target and
avoid drifting. It can be also useful to store a population-based descriptor of prey

appearances, keeping a group of sample targets.

With these constants set, two weighting strategies are proposed: the first
one considers the same set of static weights for each particle, while the second
one considers dynamic random rule weights that change smoothly with each time

step.

4.5.1 Static weights

For the considered tracking application, most parameters can be set intuitively:

e Rule 1, Hunt, should be assigned the highest weight, because particles
should be allowed to track their target.

e Rule 2, Cohesion, should keep particles together, but no so close that they

are not allowed to explore.

e Rule 3, Alignment, pushes particles in the same direction. A high weight
creates flock-like movement, while a low weight results in swarm-like
movements. Given that particles require a certain freedom to achieve

tracking, the swarm model seems more suitable.

e Rule 4, Separation, should not allow particles to converge to the same point,

but at the same time it should not push correctly placed particles away.

62

After empirical tests, the following constants are proposed:

o wi(Hunt) =1.0
e wy(Cohesion) = 0.3
o w3(Alignment) = 0.5

e wy(Separation) = 0.01

4.5.2 Dynamic weights

While proposed rule weights seem to work well on most situations, it can be
argued that manually tuning their values is an ad hoc solution. Thus, instead of
finding the optimum set of parameters for each situation, a complete stochastic

approach can be adopted.

Each particle, at each time step, shall update the weights of its movement
rules. Changing weights promote heterogeneous behaviors: as weights change
particles will show different moods, alternating unsocial behaviors that compel
particles to stay away from the group with gregarious responses that promote

coordinated particle clusters.

Weights could simply change randomly, obtaining their values from white
noise. However the output of pseudo-random number generators is too harsh, as
seen in the top row of Figure 4.5. Because weights dictate a particle’s attitude

towards group participation, they should fluctuate smooth and naturally.

Rl

Figure 4.5: Top row: pseudo-random white noise signals are too harsh to appear natural.
Bottom row: a noise signal created from the cosine interpolation of random values (blue
dots) defined along the dimension of the function.

63

Tracking Swarms

Perlin Noise functions, proposed by Ken Perlin in (Perlin, 1984), create a
noise signal from the composition of smooth noise at different scales, preserving
continuity and control over spatial (and temporal) frequency. Since its original
form, it has been extensively used to create natural looking random signals (Perlin,
1985) (Perlin and Hoffert, 1989) (Perlin, 2002), and applied in computer graphics
for the procedural generation of volumetric clouds, water, terrain, fire, smoke and

many other effects.

A noise wave function can be used to create a noise signal that changes
smoothly in time. It can be computed in a way similar to the first octave of
Perlin Noise, although control over spatial (or temporal) frequency is not required.
Instead, a piecewise wave signal function is created, handling one section at a
time. Given two random amplitude points ¢ and b, and an interpolation value p,

the cosine interpolation between a and b at a fraction p is computed as follows:

1.0 — cos(p)
2.0

1.0 — cos(p)

I(a,b = a-(1.0—

)+ b (4.9)

Each time this noise wave function is called, the next interpolated value is
returned. When the interpolation between the two points that define a section is
completed (p = 1.0), a new section is created between the current value and a new

random point. These key points are shown in Figure 4.5 as blue dots.

The following algorithm is used to generate this kind of random numbers:
Require: p = 1.0, step = 0, current Amplitude = Random(0, 1),
nextAmplitude = 0, currentValue = currentAmplitude {Requisites are
initialization values, successive calls reuse previous values. }
Ensure: currentValue € [0..1]
p =p+ step
if p >= 1.0 then
next Amplitude = Random/(0, 1)
step = Random(MINSTEP, MAXSTEP)

current Amplitude = currentV alue

64

p=20.0
end if
currentValue = Cosinelnterpolate(current Amplitude, next Amplitude, p)

return currentValue

where Random(m,n) is a pseudo-random number generator that returns a
random value between m and n. Using a random step value to increment p in

each function chunk is similar to choosing random wavelengths for each section.

Such a signal can be used, for example, to create a natural looking
wandering behavior. Instead of choosing a walking direction from a white noise
signal, which would result in an awkward trajectory, a virtual creature using a

noise wave to choose its next walking direction will look much more natural.

Back to random rule weighting, using a noise wave to alter rule weights
results in a more natural behavior progression. That way, a particle that decides
to steer away from the group and explore nearby regions will have more time to
find whether its new location is interesting. Its comfort may increase and thus it
may attract other particles towards this new region. White noise would not induce
this course of action. Particles using white noise would show unstable behaviors
leading to bouncy movements. Figure 4.6 shows the trajectories created by some
swarm particles while following the box in the sequence shown in Figure 4.2,
using three different weighting policies: fixed values, white noise random values

and noise wave values. The latter creates smoother and more compact trajectories.

(a) (b) ()

Figure 4.6: Particle trajectories using (a) fixed rule weights, (b) white noise random
weights and (c) noise wave weights.

65

Tracking Swarms

4.6 Prey scents and scent intensity

Given a prey ¢, its scent 5, is a vector computed from image feature maps. As
previously said, a tracking particle will move towards the location of the most
interesting preys in its neighborhood (i.e. pixels which features are more similar
to those stored by a particle when it was created). The attraction a prey ¢ creates

on particle p is given by:

gy = max{eIFa=sD/o1} (4.10)

gesly
which yields a value between 0 -not interesting- and 1 -most interesting-.
||.|| represents the norm and ||s;, —]| a distance function in the scent space. It
measures the difference between pixel features and those a particle is looking for.
If scents are color vectors, then ||.|| may be a L; norm in the color space (e.g. RGB
space), computing the difference between the color of preys 5, and those stored in

the particle’s feature list s, § € ;lp.

Scent similarity bandwidth is defined by parameter §. In the present
approach, it should be low enough to discriminate between colors in the RGB
space. As RGB values are being measured between 0 and 255, § = 5.0 results in

particles being selective.

Scents can become more intense if certain conditions are met, although the
use of scent intensities is completely optional and task-dependent. Depending on
the application, certain features may reveal the presence of an object (e.g. figure-
background segmentation or motion detectors in a surveillance system), or regions
where other particles have successfully achieved their task (e.g. pheromone maps
in an ACO-like solution).

Therefore, once an attraction value «y, is computed, it can be modulated
using a number of intensity modifiers g;(Z),7 € 1..m. These modifiers can be
combined using their product, so 3,, would quickly decay if one of the values is
low (Equation 4.11), the not so restrictive average of modifier values (Equation

4.12), or any other suitable function.

66

B = agp- ng(fm) (4.11)
i=1

By = Qgp- mrl (4.12)

The interest 3, that prey ¢ creates in predator p, introduced in Rule 1, is
thus the modulated attraction value that a certain pixel has on a given particle. If

no modulation is considered, then 3., = .

The present work considers the following features to modulate prey scents:

1. (1.0 — |AI(Z,)]), being AI() the image gradient. A high value of this
feature for a given pixel means that it is not placed on a high gradient
region. Gradients correspond to object boundaries. Because particles
should remain inside the tracked object, it seems sensible to avoid gradients.
The opposite strategy is also considered, as proposed in (Anton-Canalis
et al., 2006b) and (Ant6n-Canalis et al., 2006c). That way, high gradient
regions (|AI(Z,)|) are more relevant, considering that there may also exist
high gradient regions within the object.

2. (1.0 + M(Z,)), being M() the amount of movement, computed from
the subtraction of consecutive frames: pixels are more interesting if they
contain movement (similarly to frogs, which visual system is known to
be tuned to detect certain movements in their visual field (Lettvin et al.,
1940)). However, this feature only increases a pixel interest value, which
is important to allow the swarm to wander over an object that has become

static.

3. ¥, € SPN, SPN standing for Salient Point Neighborhood and representing

those pixels which distance to the closest salient point is less than a given

67

Tracking Swarms

threshold . If a pixel does not lie in the vicinity of an image interest point,
which are ideally good features to track, its interest value could be halved.
A, the size of salient point neighborhoods in pixels, should be low (around
3.0), because only those pixels that are close enough to a salient point should

be considered.

4.7 Other considerations

Many other processes may be introduced in the tracking boids scheme. The

following are just some considerations:

4.7.1 Image preprocessing

A wide variety of hand-held cameras, webcams and videos downloaded from
Internet have been used in this work, and many of them showed perceptible
compression artifacts and noisy colors. In order to smooth the negative effect of
noise, three filters were considered: a strong low-pass Gaussian filter, as wide as
half the search region, a small median filter and a small bilateral filter with wide
frequency range. Bilateral filters (Tomasi and Manduchi, 1998) are faster than
same-sized median filters (they do not need to do any kind of sorting) but much
slower than bigger Gaussian filters. However, high frequencies are preserved, so
images corrected with a bilateral filter conserve most original boundaries. See
Figure 4.7.

4.7.2 Weighted search windows and particle tiredness

Points in search windows could be assigned lower weights the further away
they are from the center of the window, penalizing larger jumps. A similar
solution consists on particles getting tired after consecutive long jumps, and
slowly recovering with slow movements. That way, tired particles would become

worse leaders. See Figure 4.8.

68

;?A ;‘ t?l t‘jfl

Figure 4.7: The left-most image (a) is smoothed using b) a Gaussian filter (aperture 11),
¢) a Median filter (aperture 5) and d) a Bilateral filter (aperture 5, range 64, frequency 3).
Bilateral filters preserve original boundaries.

This solution assumes that objects move smoothly. However, it prevents
particles from following fast moving objects. It is suitable if the capture device

and processing rates are fast enough.

Figure 4.8: a) All particles are fresh when recently created (fresher particles are drawn in
whiter color). b) If they move fast, they grow tired, but they recover if they move slowly.
Tired particles could become worse leaders.

4.7.3 Improved exploration

In order to allow the swarm to explore wider spaces, random searches can be
introduced as a new steering behavior. A random movement vector can be added
to the three existing flocking rules. Its magnitude could be inversely proportional
to the particle’s comfort value: the lower the comfort, the larger the random

movement. That way, lost particles would be able to look for their prey far away

69

Tracking Swarms

from the swarm’s centroid.

This behavior allows the swarm to recover from complete object occlusions
(see Figure 4.9). However, it may also lead particles to find a similar looking
background object. This strategy should be combined with a measure of particle

tiredness, seen before, to avoid scout particles from becoming too influential.

Figure 4.9: In this sequence, the skier is occluded by water spray in c¢). At that point,
most particles have lost their target and thus they start moving randomly until the object
reappears in f), after 40 frames. Then they regroup and recover their tracking activity.
The circle position on each picture shows the swarm centroid, while its radius represents
particle swarm dispersion.

A more deterministic approach to promote exploration consists on particles
adopting a hierarchical search strategy using image pyramids (Adelson et al.,
1984). Particles could increase the size of their search window as their comfort
value decreases, obtaining the search windows from the appropriate image
pyramid level. The lower a particle’s comfort value, the higher the pyramid level
from which the particle obtains its search window. Particles at higher pyramid

levels would be able to look for preys further away from their current position.

70

4.7.4 Pheromone maps

As previously mentioned, an interesting feature map created by the same swarm
consist on building a pheromone map similar to those created in ACO solutions.
Each Boid could deploy on its position or recent trajectory a certain amount of
pheromones, possibly related to its comfort value (or simply a constant value).
Consecutive deployments by the same or by any other particle would increase
the pheromone accumulation at that point, which would evaporate with time (see
Figure 4.10).

Pheromone maps register the memory of the recent history of the
swarm, revealing the approximate region where the tracked object lies. This
information could be exploited by particles to steer towards stronger pheromone
concentrations in order to keep the group together, steer away from them to

improve exploration or segment the tracked object.

(a) (b) (© (d)

Figure 4.10: Pheromone map at different times, computed from a group of particles
following a trajectory similar to that shown in a). Values are inverted for visualization
purposes, so darker points have stronger pheromone concentration levels.

4.8 Differences with PSO approaches

The present approach differs greatly from PSO, although both methods share the
same roots: the social behavior of animal groups and the works of Reynolds
(Reynolds, 1987) and Heppner (Heppner and Grenander, 1990). However,
while PSO performs global searches in the solution space, boids-based tracking

performs local searches.

71

Tracking Swarms

PSO particles represent solutions that evolve within the solution space,
while proposed Boid-like particles fly in the bidimensional space created
by digital images. This characteristic allows Boid-like particles to follow
heterogeneous goals: while one particle may follow color, another particle may
follow edges or textures. Steering behaviors still apply, so even when the goal
of particles may be different, they still belong to the same swarm. PSO particles
belonging to the same swarm, on the other hand, must be homogeneus. Their
position represents a feasible solution, so all particles must have the same structure

in order to be able to move towards other swarm members.

PSO approaches perform a number of iterations before finding a single,
good solution. Thus, when applied to tracking in video sequences, PSO-based
solutions require a certain number of iterations on a given frame in order to find the
current target’s position before advancing to the next frame. Moreover, although
many solutions have been proposed to adapt PSO to dynamic environments,
particles are usually forced to forget previous positions. Tracking based on boids
runs continuously, with particles updating their position independently in each

frame, naturally spreading the current swarm’s findings to future frames.

Tracking emerges from the state of all particles, locating the tracked object
at the swarm’s centroid and estimating its velocity from the averaged velocity of
all swarm’s particles. PSO relies in the goodness of a single particle, the optimal
solution. Both approaches are completely different in this aspect: while Boid-
like particles evolve independently, optimizing their individual comfort while
following flocking rules, PSO particles must converge to a single point, a single

solution.

72

4.9 Discussion

Hunting behavior and cooperative social interactions lead particles towards those
areas in the image which are similar to that where the swarm was created,
emerging an object tracking behavior for rigid and non-rigid objects where the
swarm centroid and velocity describe the position and velocity of the tracked
object. Tracking is enhanced through individual comfort optimization: the
swarm solves the spatial optimization problem in a greedy way, maximizing
each particle’s comfort and thus minimizing the swarm’s centroid distance to the

tracked object.

M. e, e,)

(c) Flocking behavior may keep particles over the tracked object.

Figure 4.11: Combined steering behaviors may correct misplaced particles.

A single particle would not be able to track an object for a long time. It
would be easily attracted to background pixels with features similar to what the
particle is looking for (Figure 4.11 a). However, when observing some hundred
independent particles trying to follow their correspondent prey pixels, it becomes
apparent that some of them are able to stay on the object for longer time periods
(Figure 4.11 b). These particles may guide lost particles towards the right object

location using flocking behaviors (Figure 4.11 c).

The swarm is able to follow its target in a varied number of cluttered

73

Tracking Swarms

backgrounds and light conditions. Due to the absence of structural rigidity in the
tracked template, objects that deform and change their scale can be easily tracked.

Figure 4.12 shows four sequences where the swarm successfully tracks its target.

Figure 4.12: successfully tracked objects, enclosed in a white rectangle.

It is important to point out that, precisely because of the absence of
structural constraints, the swarm floats freely over tracked objects. If an object has
homogeneous features and it is large enough, the swarm’s centroid will wander
inside the object. In the road line example in Figure 4.12, the swarm’s movement

had to be restricted vertically.

Figure 4.13: Fast moving object sequence.

Fast moving objects or sudden velocity changes may confuse the swarm.
If the capture frequency of the capture device is not high enough, fast moving
objects will perform sudden jumps that will leave the swarm behind. If the length
of these jumps is larger than the combined particles’ search space size, the swarm
will lose its target. However, it will still try to pursue it in an attempt to keep up,

as shown in Figure 4.13, if enough particles manage to keep the object at range.

Current predator particles do not update their target’s appearance. Thus,

74

(b)

Figure 4.14: Tracking may fail when tracked objects experience appearance changes, like
the face in a and b, because no updating mechanism is currently considered. The swarm
may also switch its attention to nearby objects if their appearance is similar to that of the
tracked object, as seen in c.

if the tracked object suffers sudden chromatic changes, as it happens in Figure
4.14(a,b), particles will not be able to update their target scent and thus they
will lose the object. In addition, objects surrounded by similar objects like those
in Figure 4.14c will also be difficult to track, because the swarm does not use

contextual information.

Chapter 6 will offer detailed numerical results on five representative

sequences.

75

Sentient Ragdolls

solution based on a structure that simulates articulated rigid body dynamics
A is applied to real time object tracking in video sequences. A number
of independent tracking particles follows their targets while subject to distance
constraints created between particle pairs. The resulting elastic structure, similar
to what is known as ragdolls in the videogame industry, is able to track objects

while trying to preserve its original shape.

5.1 Introduction

There exists a plethora of representations and tools that can be applied to
images depending on the requirements of currently considered purposes. While
descriptions of proximal objects as a whole have been extensively used (Lowe,
1999) (Viola and Jones, 2001), current tendencies consider objects as a collection
of parts (Shotton et al., 2008) (Leibe et al., 2008). How structural relations
between parts are defined depends on the approach: there may exist no explicit
links at all (free roaming particles), a centroid can be used as a hub or different

graph-like structures can be used to link particles.

In this context, a constrained particle system that simulates an articulated

rigid body which dynamics are ruled by an underlying visual process is presented.

77

Sentient Ragdolls

Particle kinematics are computed using a velocity-less Verlet integration scheme,
thanks to which the constraint system becomes solvable in a stable way with a
very simple and fast approach. The main contribution of this work consists on the
application of this method, which has been widely used in the computer games
industry, to computer vision problems, controlling particle dynamics through the

visual analysis of images.

There exists a direct relation between the proposed approach and swarming
methods (PSO, ACO...). These biologically inspired techniques maintain a
population of simple agents which activity allows the emergence of complex
behaviors from local interactions between agents, creating decentralized and self-
organized systems. In the same way, the proposed approach uses a collection
of simple particles which group dynamics arise from the satisfaction of local
constraints between two given individuals, although their individual behavior is

completely independent from other group members.

The proposed particle dynamics system is applied to a distributed tracking
solution. A team of relatively simple trackers contribute to following an object
through a video sequence while a sensible updating mechanism based on context
allows the actual object appearance to be registered while minimizing drifting.
The elastic structure that is created by the proposed approach is able to follow
objects as they traverse a video sequence, correcting misplaced particles as it tries

to preserve geometry.

5.2 Previous Work

Constrained particle dynamic simulations are techniques tightly related to the
computer games industry. The present approach is adapted directly from the
work of Jakobsen (Jakobsen, 2001), who designed the core of a physics system
for computer games focusing on stability and speed of execution. Defining an
articulated body with solids (particles) and joints (constraints) in a structure that
is similar to a graph, Jakobsen proposed a strikingly simple method to simulate its

dynamics, based on a velocity-less Verlet integration scheme. Games using this

78

system are able to handle the simulation of hundreds of rigid bodies in real time,
from pieces of cloth to plants and corpses, and many 2D and 3D physics engines

already incorporate a similar solution.

Figure 5.1: The adopted system is very versatile: a) Many elements in IO Interactive’s
Hitman: Codename 47, from main character’s tie to victim’s corpses, use the adopted
Ragdoll physics system, which Jakobsen developed explicitly for the game. b) In Bungee
Manager (a prototype created by the author of this work), jumping ropes also use a
Ragdoll solution. c¢) In 2DBoy’s World of Goo, the user is able to create complex
structures placing particles wherever she wants, fighting against gravity to achieve a
certain goal.

The proposed particle structure is similar to kinematic chains, which are
well known structures in systems where shapes must be preserved or inferred.
In (Deutscher et al., 2000) human bodies are tracked following limb movement
independently, and predefined kinematic chains are used to shape human models,
limiting the dimensionality of the tracking problem. In (Mori and Malik, 2006)
kinematic chains are used to recover 3D body configurations using shape contexts,
matching with a limited set of predefined poses computing best translations
for sample points using least squares. In (Yan and Pollefeys, 2006), feature
trajectories are used to reconstruct a kinematic chain, allowing the system to
infer the structure of the observed object. A different particle-constraint structure
is defined in (Masson et al., 2005), where a flexible grid is used to track 3D
objects. An elastic graph which nodes contain visual features computed using
Gabor wavelet transforms is used in (Wiskott et al., 1999) to recognize human
faces in frontal and profile views. In (Grasp and Taylor, 2000), kinematic chains
are used to recover information about the configuration of an articulated object,

such as a human figure, from point correspondences in a single image (see Figure

79

Sentient Ragdolls

5.2).

Figure 5.2: The image on the left represents an image containing a figure to be recovered,
where joint locations have been located by hand. The image on the left shows the
recovered 3D model from a novel vantage point (Grasp and Taylor, 2000).

Links between particles are not always explicit. In (Leibe et al., 2008)
planar patches are extracted from multiple views of a given object and grouped
into clusters with similar features. As each patch stores its possible relative
positions in relation to the known centroid of the object, clusters are able to vote
for different probable object locations. A point in space-scale with enough votes
becomes a detection hypothesis, linking all the clusters that voted for it in the
same structure. This method is explicitly designed for object detection, so no

kinematics are considered.

Active Appearance Models (AAM) (Cootes et al., 1998) use a point
distribution model to combine shape and gray-level variation in a single statistical
appearance model. A training set of labeled images is required, where landmark
points are marked on each example at key positions to outline the main features.
For each labeled key point, its mean position and variance is computed from
all available training images. Thus, a correct labeling is extremely important.
Key points must be place correctly in each training image, always representing
the same point in the modeled structure. Once the statistical shape information
is gathered, a mean shape can be computed, from which new shapes can be

generated costlessly (Cootes et al., 1995). Because each key point also gathers

80

appearance information, AAM become highly flexible deformable models that are
able to represent any object within bounds of the training set. Figure 5.3 shows an

example.

Figure 5.3: The three images on the top row show how an AAM shape model adapts to the
underlying image iteratively. The bottom row shows how the appearance model converges
from an average appearance.

5.3 Articulated Rigid Body Dynamics

Particle dynamics can be used to emulate complex systems accurately, like the
structure of a certain virus (Freddolino et al., 2006) or the folding properties
of proteins (Hinrichs and Pande, 2007). But they are also used to achieve
believability, stability and speed of execution in animations (Capell et al., 2002)
and interactive software (Murray et al., 2004). The proposed application of these
particle systems to computer vision tasks requires high performance, but precise
accuracy and realism are not primary concerns. The graph-like structure used to
represent a visual entity will be controlled by a Verlet integration scheme and a

simple constraint solver, as defined by Jakobsen in (Jakobsen, 2001).

81

Sentient Ragdolls

5.3.1 Sentient Ragdoll Definition

A Sentient Ragdoll A = {P,C?} is defined as an articulated rigid body whose
evolution is driven by image analysis related processes. As such, it can be
understood as a ragdoll that is able to perceive information extracted from images

and video sequences and react according to a certain goal.

A Sentient Ragdoll is composed by a set of particles P and a set of

constraints C' between particle pairs.

Each particle p, p € P is defined by the following 4-tuple:

e 3

p =< Ty, T, My, dp, V,, >, being:

1. ¥, a particle’s current position in the image space.

2. 7 aparticle’s position in the image space at previous time step.
3. @, a particle’s acceleration.

4. m,, is the particle’s mass.

5. V, is the particle’s Visual process, and it comprehends all image features and
methods needed for achieving the visual task at hand. It will be explained

in detail later.

Constraints ¢,c¢ € C' are defined by a 3-tuple: ¢ =< p,q,d >,p,q € P,
meaning that particles p and ¢ should rest at a distance d of each other. The
present approach only considers distance constraints, although adding any other

type (i.e. angular or scale constraints) is straightforward.

Ragdoll systems are simulated following the next steps:

e Accumulate Forces: Each particle acceleration is updated with current

existing forces (gravity, wind...), if any.

e Kinematics: Each particle updates its velocity and position using a Verlet

scheme.

82

e External constraints: Each particle position suffers a projection as a result
of existing external constraints, if any (e.g. world limits, user interaction,

collisions with other objects...)

e Constraint solver: Internal constraints (links between particles) are satisfied

using relaxation.

The following sections explain each step in detail.

5.3.2 Kinematics

A first approach to particle dynamics simulation is the Euler integration method.
Each particle motion is usually defined by two variables, its position x and

velocity v, which are updated in each time step using the following equations:

¥y=xz4v At

vV=v+4a At

where A t is the time step and a is the acceleration computed using Newton’s
second law F' = m - a, being F’' the accumulated forces acting on the particle and

m its mass.

The physics system proposed in (Jakobsen, 2001) uses a velocity-less Verlet
integration scheme (Verlet, 1967). Given a particle p,p € P, particle velocities
are implicitly computed from the current x;, and previous x;, positions, so the new
value is given by:

T =22y —) +ay At (5.1

which behaves similarly to Euler integration as x;, — x, is an approximation of
the current velocity of a particle. In such a system, particle velocities are updated
by forces (and thus accelerations), or simply moving particles to a given position
(projection). Although it is not very accurate, as energy might dissipate, it is fast

and stable, because velocity inaccuracies are not accumulated.

83

Sentient Ragdolls

5.3.3 Constraint Solver

A common approach to defining an articulated rigid body consists of a system
of interconnected springs and particles which dynamics are computed deriving
Hook’s law. However, if the number of particles and constraints grows, it is not

always trivial to solve the corresponding system of differential equations.

In the adopted physics system, links are considered infinite stiffness springs,
i.e. sticks, and constraints are solved using projection. Misplaced particles
violating constraints are simply projected to a position where the considered
constraint is satisfied. If two particles are too close they are pushed apart, and vice
versa. One advantage of the Verlet scheme is that changes in velocity as particles
are relocated to satisfy constraints are handled automatically. Because velocity
is introduced implicitly through subtraction of consecutive positions, stability is

preserved.

If particle weights (masses) are considered, the heavier the particle the
weaker the suffered correction. If, for some reason, a certain particle should not
move, being assigned an infinite mass will make it immovable. A zero mass,
on the other hand, will force a particle to follow the rest of the system without

affecting its dynamics (see Fig 5.4).

Given a distance constraint ¢ =< p, ¢, d > between two particles p, ¢ at a
distance d, with particle masses m,, and m,, the new projected position z’ for each

particle is given by:

5 = Z,—1,
_ 9] —d
© - 1.0+ 0] (myt +m.t)
ay = Ty, tbee
Ty = Tgmy'0-e (5.2)

When a constraint is satisfied its two particles are reallocated, which may

84

Constraint satisfaction

a) Distance constraint b) Compressed link

p q [e

c) Stretched link d) Different masses

° ° ¢ @

- - ~ -

Figure 5.4: Local constraints can be consecutively satisfied in an iterative process. A
distance constraint c is defined between two particles p and ¢ (a). If a link between two
particles with the same mass is stressed, they are equally projected to their ideal position
(b, ¢). Heavier particles suffer a smaller correction (d). This process is repeated for every
constraint iteratively, a fixed number of iterations.

result in a different constraint being violated. Using relaxation (Press et al.,
2002), constraints can be consecutively satisfied in an iterative process. For a
given number of iterations, each constraint is solved using expression 5.2. While
constraints may not be satisfied in a single pass, the Verlet integration scheme
allows the system to converge to the correct state over consecutive time steps,

correcting positions incrementally.

This incremental correction allows relaxation to be stopped prematurely.
Actually, the number of iterations establishes the elasticity of the whole system.
Figure 5.5 shows a particle mesh which internal constraints are satisfied using
one and fifty iterations between consecutive frames. A single iteration creates a
flexible structure, while an increasing number of relaxation iterations produce a
stiffer body.

85

Sentient Ragdolls

(a)

$
.

(b)

Figure 5.5: A particle mesh that represents a piece of cloth is defined in an environment
where gravity is present. Two extremes of the cloth are nailed to the background (their
mass is infinite), but the rest of them evolve following the Verlet integration scheme,
converging to the correct state over consecutive time steps. A higher number of iterations
in the relaxation process produce stiffer bodies that also need a lower number of time
steps to converge.

5.3.4 External constraints

Links between particles are considered internal constraints, and they define the
structure of an articulated rigid body. But any particle may be affected by forces
related to the environment where the structure is defined. In computer games and
simulations, these forces may be produced by a collision with an static object, a
link with another object, gravity, wind or through user interaction, to name a few

examples.

Some of these forces may be introduced applying Newton’s second law
(F' = m - a), updating accelerations in the Verlet scheme. Gravity or Wind,
for example, are easily defined by forces. But, in some cases, it may be

more convenient just projecting the affected particle to the desired position (for

86

example, to prevent a particle from going through a wall), exactly as the constraint

solver does when correcting stressed links.

Processes not related to the structure of the articulated rigid body which
affect the position of one or many particles are considered external constraints.
Affected particles are simply projected to the designed location or assigned a

certain acceleration, and internal constraints drag the rest of the body accordingly.

It is precisely by external constraints, defined by visual processes, how an

articulated rigid body will interact with images.

5.4 Application to Computer Vision

The current particle system was originally designed to be applied to computer
games, where virtual objects react believably to interactions with the user and
other virtual objects. As this virtual worlds usually mimic our own reality, forces
acting on objects include gravity, wind and, given the violent nature of some

games, projectile impacts and explosions.

In our approach these structures will traverse the projected space created
by a video sequence, evolving from frame to frame according to a certain visual
purpose. Therefore, dynamics will be ruled by the underlying visual process,

conveniently updating particle masses (weights) and accelerations.

In Section 5.3.1 particles in a Sentient Ragdoll A were defined using a 4-
tuple: p =<), T, my,d,, V, >,p € P, where V), represented the particle’s
visual process. In this context, V), may create an acceleration or project the particle

to the most suitable point according to a certain visual task.

The layout of particles and constraints created between them also depend
on the purpose of the visual system. Particles can be placed on the visual
space randomly, regularly (e.g. in a grid) or using salient point detectors, while
constraints can be defined linking particles randomly, using the kth closest
neighbors, using a single particle as a hub to which the rest of particles are linked

to or building a Delaunay triangulation. The best configuration only depends on

87

Sentient Ragdolls

the task at hand, even allowing dynamic structures that redefine their links and

weights at every time step.

5.4.1 Tracking

Tracking systems generally store a representation of the tracked object, defining
those features that will allow locating the object as it evolves through time, space
and appearance. Different and increasingly more complex representations have
been considered in literature: image patches, histograms of gray values, color or
gradient orientations, texture descriptors, collections of local features... Not many
approaches, however, consider that the appearance of a visual object may vary
through time. While visual changes are common in a general tracking scheme,
most solutions are designed to ignore this problem or a naive updating mechanism
is used, constantly updating the descriptor. This leads to the issue of drifting and
the loss of the tracked object.

However, it is also true that updating the tracked pattern may introduce false
representations. Updated patterns may include pieces of background or strange
objects, which usually leads to losing the tracked object. Updates must occur
scarcely, only when they are strictly necessary. However, not even a sensible
context-based updating mechanism like the adopted one, explained later, assures

perfect updates.

Tracking solutions have commonly used a centralized logic approach.
Objects are considered single entities which position is defined by the outcome of
a feature matching process. If part-based descriptions are used, probability maps
are created considering each part’s matching weight, and a mode-seeking process
is used to locate the most probable position of the object (Adam et al., 2006). In
both cases the tracking process continues from a single inferred location. If this

position is wrongly estimated, the tracked object may be lost.

A different approach may consider tracking as the outcome of a team of self-
reliant trackers, allowing self-organization through local interactions, as proposed

in the previous chapter. Different mode-seeking methods may be used to locate

88

the object, but each tracker is still an independent process. Information from the
group can be used to correct individual behavior, so the tracking task becomes

more robust to isolated mismatches. The present solution belongs to this latter
group.

Modelling the tracked object using an articulated rigid body constitutes
a robust approach to part-based tracking. Each particle tracks a piece of the
considered object, so the system is able to cope with local deformations. Due
to the elastic nature of articulated bodies, particles which lose their target can
be relocated when constraints are satisfied, so tracking becomes more robust to
occasional errors. This elasticity also allows the shape of the structure to be

recovered, even after strong deformations (see Figure 5.6 and seen in Figure 5.7).

Figure 5.6: Most free-roaming particles manage to track their target properly thanks to
their view bank, but some of them drift away from their ideal position.

&9

Sentient Ragdolls

Figure 5.7: The sentient ragdoll tracking solution manages to recover its original shape
after two out of plane rotations, successfully dealing with partial occlusions while
updating tracked patterns.

5.4.2 Pattern matching and updating

In this context, particles may use any plausible tracking method found in literature.
However, they do not have to share the same method: different approaches can be
used depending, for example, on the location of the particle within the structure.
Each particle’s tracking method should return a single point where the particle

should be projected to, defining an External constraint for the Sentient Ragdoll.

For demonstration purposes, each particle will use a relatively simple kernel
tracking method with context-based updating, similar to the one proposed in
(Guerra et al., 2005). This method is explained in detail in the following sections

for self-containing purposes, but also to comment some improvements.

90

Pattern matching

Tracked targets will be stored by a particle’s visual process, V,,, as color planar
templates. Tracking will consist on finding their most probable position within a
search window around the last known location, using a similarity function which

optimum is found through exhaustive search.

Targets are found sliding templates through search windows. Resemblance
between overlapped images is measured using a sum of squared differences
(SSD), although any other measured could be used (Hagedoorn, 2000). SSD
creates a number of local minima at best matching positions, as shown in Figure
5.8. Two local search window extrema are considered: the first one, the global
minimum, dictates the new position where the particle must be placed in order
to track its target; the second one, the second best local minimum, is used in the
updating policy as a measurement of the presence of similar objects in the vicinity,

as seen later.

0.7+

0.5
04
0.3~

0.2+

0.1~
0

Figure 5.8: Surface created sliding a template through a search window. Surface values
correspond to the similitude measure between the template and the overlapped region. The
figure shows a global minimum at m;, which correspond to the best matching position,
and two local minima at my and mg, which represent context similitude. Distance d
between my and mo will be used by the template updating policy (Guerra et al., 2005).

Patch sizes may vary in order to represent objects at different scales.
However, when patches are stored in V), as templates, they are resampled to a

normalized size, although the original patch size is also kept. When a template

91

Sentient Ragdolls

is used for matching, a search region is defined in the current image around a
particle’s last known position. Its size is proportional to the size of the original
patch represented by the template. Using the same proportion factor, a search
window is created from the template size. During tracking, the search region is
resized to this normalized search window, where the template convolution takes
place. Figure 5.9 depicts this resizing process with two different-sized patches.
This mechanism allows searching at different scales in constant time, which was

not considered in the original work (Guerra et al., 2005).

Template a

=1

Template b %

Searcvh window b

RESLH

Frame from Raiders of the Lost Arc

Figure 5.9: Image patches and search regions are resized to a fixed template and search
window size. Thus, searches are performed in constant time, no matter the original patch
scale.

Normalized template size and proportion factor for the search window
should be chosen carefully. If templates are bigger than patches, they will contain
redundant information from upsampled patches. If they are too small, many
details from the original patch may be lost after downsampling. Smaller templates

are, however, computationally cheaper.

Search region and search window sizes affect the ability of particles to
follow fast moving objects. Smaller sizes are only suitable for tracking slow
moving object if the image capture device frequency is not high enough, while
bigger sizes allow particles to keep up with faster targets. For most tested cases, a
template size of 11211 pixels and a search window three times bigger (the same

proportion as shown in Figure 5.9) yields good results.

92

Updating using context

Visual changes in the tracked object should be expected as it traverses the video
sequence. Many approaches, like (Adam et al., 2006), propose tracking solutions
that simply ignore the updating issue, even when it seems obvious that keeping a
constant pattern is not a solution in a changing environment (unless this constant

pattern includes a nourished set of appearances of a given object).

However, a wrong updating policy will derive in the drifting issue: templates
may be altered until they no longer represent a view from the tracked object.
An updating policy may consider updating templates constantly (every frame),
periodically (after certain number of elapsed frames) or using a threshold to
detect changes. See (Guerra et al., 2005) for an detailed analysis of updating

mechanisms.

Constant updates may accumulate small changes in the stored pattern, due
to the discrete nature of digital images. If the pattern is periodically updated,
irrelevant updates may occur, or even worse, critical updates may be missed.
Using a constant threshold to update only when a certain amount of change is
detected introduces the problem of choosing the right value. A low threshold is

similar to constant updating, while a high threshold may miss critical changes.

Updating according to context seems a reasonable solution. A ratio can be
computed between the extrema and the average value in the search window. If this
ratio is high enough, meaning that the current view differs, updating takes place.
But again, how to choose if this ratio is high enough? The current solution uses
contextual information found in the search window in order to define a dynamic
threshold, as proposed by (Guerra et al., 2005).

As stated before, the second minimum in the search window is also
considered. This extremum is a measurement of the presence of patches that
are similar to the one being tracked, and it is used to decide when a template
should update. The context-based updating mechanism consists of the following

two steps:

1. A threshold 7 is initially computed as half the distance between the two best

93

Sentient Ragdolls

minima in the search window, 7 = (my —my) - 0.5

2. In each frame, after template convolution takes place, the two best local
minima m4 and ms in the search window are found. A template will be
updated on two occasions: 1) the global minimum m, is above the current
threshold 7, meaning that the object appearance has changed significantly
or 2) the second minimum ms is below the current threshold 7, meaning
that there exists an object in the search window which is too similar to the
one being tracked. As the patch is updated with the overlapped image, T is

also recomputed as 7 = (my — mq) - 0.5

The updating mechanism used in our approach allows each particle to keep track
of changes in the visual appearance of the tracked object. However, the current
system is strictly pre-categorical, so there still exists the possibility of including
views that do not belong to the tracked object. This may happen if, for example, a
view belongs to the boundary of the object and contains background information.
If the background is static and the appearance of the object changes (i.e. the object
rotates or suffers motion blur), the tracking and updating mechanism will find a

better match in the unchanged background scene.

This way, particles following parts located in the boundary of the tracked
object may change their attention to pieces of background. While in most
situations these particles will be forced to follow the group due to internal
constraints, as seen later, their influence may be too strong under certain
circumstances, sticking themselves to a patch in the background and dragging
the rest of the structure with them, losing the object entirely. This usually happens
if the tracked object does not contain good features to track or it if is too small.

The use of a view bank alleviates this problem.

5.4.3 Managing views

As previously mentioned, V,, a particle’s visual process, contains not a single
template but a bank of color planar templates, which represents a short-time visual

memory of the most probable appearances of the object being tracked. While

94

tracking, each template in the view bank of a particle is matched against the search
window. The one with the best matching cost is considered the current view for

that particle.

As an object traverses the distal space, its appearance will usually change
smoothly. This is represented in the proximal space as a set of views that will
be revisited periodically. Storing these representations in a bank of views allows
the system to reuse previously seen appearances of the proximal object, reducing
the need for updating and thus drifting. These views also represent the visual
knowledge that a precategorical vision system can build from the observed object

autonomously.

Due to the finite nature of computer memory and processing time, this
visual memory must be limited. For tracking purposes, only a small number of
significative views will be stored, creating a short-term memory of recently seen
and distinctive appearances. Fortunately, the use of previously explained context-
based threshold also fulfills this objective. Because views are updated only if they
have changed significantly or if a neighboring object is too similar, the singularity
of each view in the visual bank is guaranteed up to a certain degree, as seen in
Figure 5.10.

When a view bank is full and a new update takes place, an old view must
be discarded. Choosing which one depends on when it was used for the last time
(obsolescence) and how much it has been used (persistence). The most useful
views are those with high persistence and low obsolescence, that is, views that
have been recently used or views that have been used for longer periods. If
each view stores these two values, a measure of utility can be defined using the

following expression:

utility = persistence/(1.0 + obsolescence) (5.3)

When working with video sequences, it makes sense measuring time in
elapsed frames. This way, each view will track persistence as tp, or the number

of frames that it has been used, and obsolescence as to, or the last frame when

95

Sentient Ragdolls

this view was used. Then, being now the current frame, utility is defined as:

utility = tp/(1.0 + now — to) (5.4)

Once the utility of each view is computed, the one with the lowest value
is discarded. This way, the bank of views will always contain those patches that

have been used recently and for longer times.

Figure 5.10 shows how six different particles update they view banks while
tracking their targets in a 42-frames sequence. For demonstration purposes view
banks capacities are not restricted, so they contain all considered updates. Note
that, while the second particle needs up to nine updates, the fifth one only updates
twice during the sequence. Currently used views are marked with a green circle
(the red one marks the worst view, the one with highest matching score, which is
usually remarkably different from the best view). Note that the current view for
each particle is not always the last view in the bank (the bank grows from left to
right), and that the worst view in a bank (marked with red circles in Figure 5.10)
does not have to coincide with the discarded one. This decision depends strictly

on the utility value of each view.

Canonic views

View banks in (Guerra et al., 2005) represent a short-term visual memory of
recently seen template appearances, ideally allowing a system to overcome
appearance changes. Tracking solutions that do not update their templates may
lose their target if its appearance changes. But, on the other hand, these solutions
are certain that only information that belongs exclusively to the tracked object is
being used. In (Guerra et al., 2005), even its sensible updating policy, explained
in previous sections, may not avoid capturing an image patch that does not belong
to the tracked object. The tracker may stick to a piece of background and lose
its target due to a variety of reasons: occlusions, rotations, drastic appearance

changes...

The present work adopts a mixed solution. View banks will store a limited

96

(a)

Figure 5.10: Six sample frames from a 42-frames sequence from Ivan Reitman’s
Ghostbusters are shown. Below them, each row of pictures represents the state of the view
bank of a tracking particle at the last frame of the sequence. Because updates depend on
context, updating frequency is different for each particle. Green circles mark the currently
used view for each particle, while red circles show the worst matching view.

number of templates, but one of them will be an unchangeable view, called

canonic, from those created on the initial tracking frame. This first frame should

97

Sentient Ragdolls

show a representative pose of the tracked object (i.e. a frontal view of a face).
Views captured from this initial image are supposed to reappear at some point.

They represent a reliable model to go back while the rest of views are updated.

Finding an updating policy that guarantees that a recently updated view
belongs to the object is not trivial. The tracker may have lost its target, updating
its templates with pieces of background or patches from strange objects. If
adverse conditions are met, all object patches in a view bank may be replaced
with strange views, and the tracker will not be able to recall how its target looked
like. A canonic view may allow the tracker to recover a certain object appearance.

However, under changing light conditions, canonic views may become useless.

5.4.4 Particle layout

Although each particle follows its target independently as described in the
previous section, they are all part of a bigger structure. Sentient Ragdolls are
shaped creating constraints between particle pairs, so specific structures can be

built mimicking the shape of the target object, as shown in Figure 5.11.

Figure 5.11: Articulated rigid bodies created with the shape of a known object. a) Face
structure created from annotated face points as defined by (Cootes et al., 1998). b) Simple
human-like skeleton model.

98

With enough hand-marked samples, such structures could also contain
averaged templates for each possible appearance of each particle in their

respective view banks, similarly to elastic bunch graphs in (Wiskott et al., 1999).

However, the present approach deals with precathecoric tracking, so no
specific shape nor appearance will be defined a priori. Instead, two mechanisms
are considered to place particles on the target object autonomously: the first one
places particles regularly on the vertices of a grid; the second one places particles

at salient point locations, with and without scale.

Links between particles can be defined automatic and consistently using the
edges created by the Delaunay triangulation of allocated particles. The Delaunay
triangulation of a set of points lying on a plane creates a planar graph that
subdivides the plane into triangles, maximizing their minimum angle (Delaunay,

1934) and satisfying, among others, the following properties:

e The exterior face of the triangulation is the convex hull of the point set.
e Each vertex has on average six surrounding triangles.

e The circumcircle of any triangle in the Delaunay triangulation does not

contain any other vertex in its interior.

These properties assure well-shaped meshes that are suitable to create

structures which are robust against deformations.
The following layouts are considered:
e Simple grid: particles are placed regularly over the object to be tracked,

defining a grid. Each particle is linked to its four neighbors in the grid, if
they exist.

e Delaunay grid: particles are also placed on a grid, but constraints are created
using a Delaunay triangulation. The structure is similar to the Simple grid,

but more robust.

e Rigid grid: particles are also placed on a grid, but each particle is linked to

its eight neighbors.

99

Sentient Ragdolls

i i i i
Figure 5.12: Simple grid with non-overlapping 19x19 patches.

Figure 5.13: Rigid grid with non-overlapping 19x19 patches.

e KLT points: particles are placed on salient points defined by KLT features
(which are, ideally, good features to track (Shi and Tomasi, 1994)).

Constraints are also created from the resulting Delaunay triangulation.

Figure 5.14: Delaunay triangulation from KLT points, using 19x19 patches.

e Scale salient points: salient points are computed using the SURF scale point
detector (Bay et al., 2006). Thus, particles will follow parts of the object at
different scales, like those shown in Figure 5.15. Once again, particles are

also linked using the edges created by a Delaunay triangulation.

Grid structures are much less rigid than Delaunay-based meshes, so they
allow stronger deformations and thus they grant particles more freedom to achieve
their goals. However, because of their regularity, grid structures are prone to fold

onto themselves until they look like a single grid cell (see Figure 5.16).

Folding is almost inevitable if the grid structure is ruled by distance

100

Figure 5.15: Delaunay triangulation from SURF scale salient points.

constraints, although it could be alleviated by using angular constraints instead,
and it is tightly related to the updating mechanism. A sentient ragdoll which
particles do not update their view bank will not show this folding tendency.

Therefore, canonic views are also useful to prevent this effect.
d d d
d
a) > b) —> .
d d
- D= 1] - %@Iﬁ
Figure 5.16: Basic grid cells like a) and b) allow certain configurations that do not violate
constraints, but where the original structure is lost. Using two diagonal links, like in c), the
basic cell may not fold onto itself. However, the main problem with grid-like structures

when distance constraints are used is that they may still fold until they look like a basic
cell, as shown in d).

While KLT and center-surround salient points contain interesting features
by definition, particles in a grid may be created on uninformative image regions.
Homogeneus and plain features are difficult to track: a particle following an
homogeneous patch in a region with similar features (i.e. a particle following
a white patch in a white wall) will not be able to find a distinctive extremum
to follow. These patches can be rejected when creating a grid layout and even
during tracking, if their color variance is lower than a threshold (see Figure 5.17

a). However, homogeneous regions may also correspond to blob-like structures,

101

Sentient Ragdolls

so it 1s not always safe removing them.

The size of particle patches created from scale salient point detectors like
SUREF is defined by the scale at which each point is detected, which is optimum
by definition. If this information is not available, particle patch sizes should scale

proportionally to the size of the tracked object.

Grid layouts also require defining grid densities, i.e. distances between
neighbor particles. Low distances produce dense grids where particle patches
may overlap (see Figure 5.17 b), while large distances produce sparse grids where

particles may not properly cover the tracked object, if they are not big enough.

(a) Delaunay grid with sparse, non- (b) Dense Delaunay grid with overlapping
overlapping, 19x19 patches. 11x11 patches.

Figure 5.17: Other possible grid configurations.

5.4.5 Tracking quality and particle weights

Particles may vary their mass as the articulated body evolves. As shown in
Figure 5.4, heavier particles will pull from lighter particles. In this tracking
context, particles correctly following their target should ideally pull lost particles,
correcting their position. Thus, particle masses should be related to the quality of
the tracking process, being assigned heavier masses if they are properly tracking

their target.

Measuring tracking quality is not trivial for a system that updates its
templates. If no updates are considered, a tracker may simply measure differences
between its template and the matched image. But if templates are updated, no
updating policy guarantees that a recently updated view belongs to the object. The

tracker may have lost its target at some point, updating its template with a piece

102

of background or a patch from an occluding object. A recently updated template
may have a good matching cost, even it the matched view does not belong to the

tracked object, sticking the tracker to an unwanted image patch.

Nevertheless, the tracking activity, as explained in Section 5.4.2, produces
some measures for each view in a view bank that can be used to evaluate tracking
quality: the two best extremum values in the search window (see Figure 5.8) and
a view’s utility. The first extremum is a direct measure of how a view matches
the underlying image. Ultility of a view informs about a the obsolescence and
persistence of a particle. Different weighting policies derived from these values

are proposed and discussed:

e Matching quality: Particles are assigned a weight obtained from the
first minimum in the search window. This way, particles which current
view finds a good match in the search window are given heavier masses.
However, as previously stated, good matches do not mean higher tracking
quality, because matched views may correspond to a wrongly updated
template. Only matching a canonic view can minimally assure tracking,

as it certainly belongs to the original object.

e Utility: Reliability of a view is given by its utility. A view with high
persistence and low obsolescence is ideally a useful view. However, a lost

particle may also build up high utility values as it sticks to its wrong target.

e Matching and utility combined: Tracking can be evaluated combining
matching cost and utility. Ideally, a good tracking activity should produce
good matching values with high utility views. A perfect matching with
a low utility value can be produced by a recently updated view or and
obsolete view. In both cases that view is not reliable, and the matching
cost is uninformative. Particles could be assigned higher weights if their

matching cost is good and their utility high.

e Worst matching analysis: The view with the worst matching value in a view
bank is the one that differs most from the matched position, and thus from

the currently used view (see how worst views, marked with a red circle in

103

Sentient Ragdolls

Figure 5.10, are different from current views, marked with green circles).
This worst matching value will be similar to the best matching value if both
views look similar. A high worst matching value is an evidence of the bank

containing drastically different views.

However, it is difficult to tell apart whether the particle is properly tracking
its target, but its view bank contains a strange view, or if the particle has

wrongly updated its current template and it is tracking a strange view.

A safe solution consists on assigning heavier weights to particles which
view banks keep their appearance heterogeneous, that is, particles which

worst matching value is low.

e Homogeneus weighting: If no tracking quality measure seems to be reliable,
maybe particles should all be assigned the same mass and let body dynamics

adjust misplaced particles.

5.4.6 Ragdoll elasticity and shape recovery

The number of iterations in the constraint solver step limits the elasticity of the

whole articulated rigid body and influences tracking.

Elastic structures let particles follow their targets with a higher degree of
independence. Particles are allowed to explore their search space and move

around more freely, deforming the ragdoll as seen in Figure 5.18 a.

A higher number of iterations produce stiffer structures. Particles may still
explore their search space, but they are not allowed to wander far away from their
expected relative position within the structure. Misplaced particles are quickly

corrected, limiting deformations.

In both cases, the original shape can be recovered after being deformed
thanks to those particles that stuck to visible parts of the tracked object. These
particles serve as an anchorage that allows internal constraints to push lost

particles to their correct position, as seen in Figure 5.18 b.

The ability of sentient ragdolls to recover their shape is tightly related to

104

[
~

(b)

Figure 5.18: Rigidity limits freedom of movements. With just two iterations in the
constraint solver step, resulting structures are very elastic (a). With ten iterations, the
structure is much more rigid (b). Grid structures like the one shown in this example may
still fold onto themselves, no matter their rigidity. In both cases, the structure is able
to recover its shape after strong deformations if enough particles are still tracking their
targets properly.

mesh configuration and template updating. Weak configurations, like grids, when

combined with complete view bank updating, may lead to situations where the

structure is folded and all particles store the same view. If particles forget the

105

Sentient Ragdolls

appearance of their original target and the structure is not robust enough, the
ragdoll will be unable to recover its shape. On the other hand, if particles store a
canonic view or the structure is robust enough (e.g. a Delaunay triangulation with
enough particles is used to create constraints), deformed ragdolls may recover
their shape either matching canonic views or pushing particles when constraints

are satisfied.

5.5 Discussion

The proposed kinematic system using Verlet integration and distance constraints
has been successfully applied to tracking in a variety of situations. The
combination of an elastic structure and a bank of views for each tracking particle

allows the system to recover its shape, correcting misplaced particles.

Partial occlusions are also handled by our approach. It may happen due
to the interference of a second object between the tracked one and the visual
sensor or due to rotations of the tracked object (as seen in Figure 5.6). The
effect is similar in both cases: some particles will lose their target and, most
probably, the tracked template will be wrongly updated. However, as long as
part of the object remains visible, some other particles may still track their targets
properly. As the occlusion effect ends, the structure suffers a re-adaptation process
as particles recover older views and constraints push them towards their correct

position (Figure 5.18).

This is where the advantage of a multi-tracker approach with regard to a
single-tracker approach stands out. In a multi-tracker scheme like the proposed
one there exist multiple cues that may be used to correct misplaced particles, being
links between particles the main important cue for relocation. Moreover, the effect
of links is spread throughout the structure, so every particle contributes to this

correction mechanism.

However, other cues can be considered. For example, link stress can be
measured. If most links shared by a given particle are stressed, it can be assumed

that the particle is stuck to a piece of background while the rest of the group is

106

tracking the object (although it could be the other way round). This clue can
be included in our approach proportionally re-weighting each particle using the
summed stress of its links. Different approaches could consider removing stressed

links and killing unbound particles.

Link stress can be also used to detect scale changes. If the tracked object
shrinks or grows all ragdoll links will experience a similar stress level, stretching
if the object increases its size or compressing if it decreases. In those cases,
link sizes could be updated to adapt the whole structure to the new size of the
tracked object (Figure 5.19 shows a preliminary test). If this clue is conveniently
combined with space-scale tracking particles, ragdoll structures would be able to

track objects across scales.

Figure 5.19: Changes in scale can be detected from link stress levels. Preliminary tests
show that tracking objects across scale and space is feasible.

The updating behavior of neighboring particles could be considered when
updating a given particle. If a rigid body is being tracked, it seems sensible that if
most linked particles are not updating, the considered particle should not update
either. However, this may not be the case for many objects, like faces, which parts
may change independently (i.e. a blinking eye or a mouth while speaking), so it
was not considered in our approach. A different kind of cues could make use of
group behaviors in order to re-weight particles. For example, we may suppose that
neighboring parts of a given object will evolve similarly through space. Thus, a
particle which velocity is radically different from that of its neighbors is probably

lost and its weight can be decreased.

107

Evaluation

THE two proposed particle-based tracking methods are empirically evaluated
in this chapter. While many examples of the contribution of this work have
been already shown in previous chapters, both tracking methods are now tested

against five representative sequences.

In order to evaluate the goodness of proposed tracking methods, ground
truth information is necessary. Five sequences where annotated frame by frame,
locating the centroid of the target object and its scale, which is defined as the
radius of the circle enclosing the object in each frame. However, these five
sequences are just a representative subset of all the different tests performed
during this work. They consider a variety of situations: rigid objects, deformable

objects, out of plane rotations or fast movements, to name a few.

Both methods require a significative number of parameters to be set, leading
to a wide variety of configurations and great versatility. For practical purposes
some of these choices, such as search window sizes, search strategies, view bank
capacity or the number of iterations of the constraint solver, will be fixed. For
some others, such as feature maps, object descriptors, rule weights of particle
layout, different combinations will be examined. The tracking swarms solution

will be referred to for short as Swarmtrack.

109

Evaluation

6.1 Swarmtrack evaluation

Swarmtrack tracking activity £(S) is evaluated measuring, at each frame in each
sequence, the Euclidean distance between the swarm’s centroid SZ and the location
of the hand marked object’s position n7,, divided by its size m, (See Equation 6.1).
This division factor is required in order to obtain an error measure that is invariant
to the scale of the tracked object, with £(S) values below one meaning that the
centroid of the swarm remains within the image region occupied by the tracked

object.

e(S) = +——" 6.1)

Two different experiments are conducted. The first one evaluates six scent-
intensity feature combinations, using the static weights proposed for the steering
behaviors of boids in Chapter 4. The second one considers variable random

weights and five scent configurations, ignoring intensities.

The difference between scents and intensities should be highlighted. The
former are image features that each particle stores as a descriptor of the object to
be tracked. The latter are used to modulate the interest of a particle on a certain
image region due to local measures like the presence of gradients or movement,
which are completely unrelated to the tracked object. The use of intensities is

optional and task-dependent.

6.1.1 First test configuration: scents, intensities and fixed

weights

This first test considers color as the tracked scent and evaluates the effect of
different image features used as scent intensities. Rule weights and search
parameters are fixed to the following values: Hunt w; = 1.0, Cohesion wy = 0.3,
Alignment w3y = 0.5, Separation wy = 0.01, Momentum wy = 0.1 and search

window size n = 11. Each swarm is composed by 150 particles approximately.

110

The following scent-intensity configurations are considered:

. Scent: color - No intensity. Particles compute a movement vector towards
the most appealing region in their vicinity, measured in terms of RGB color

similarity between the color of a particle and image pixel values.

. Scent: color - Intensity: gradient. Color scents are modulated using gradient
magnitudes. Thus, particles are attracted towards pixels with the proper

color placed on high gradient regions.

. Scent: color - Intensity: inverted gradient. Similar to the previous
configuration, but each location is weighted with the inverse of the gradient
magnitude at that point. Particles are attracted towards pixels with the

proper color placed on plain regions that show no boundaries.

. Scent: color - Intensity: KLT points. Scents measures are halved at pixels

that do not lie in the vicinity of a Kanade-Lucas-Tomasi (KLT) salient point.

. Scent: color - Intensity: inverted gradient, movement and KLT points.
Movement is combined with most previous measures. Pixels are more
attractive if they have a certain color, if they are placed on plain regions,
if they lie next to a salient point and increase their weight if they contain

movement.

. Scent: color - Intensity: inverted gradient, movement, KLT points but no
flocking activity: each particle looks independently for interesting pixels
using the previous feature combination, but no flocking activity is included.
That way, particles are able to roam freely across images, completely

ignoring the rest of the swarm.

6.1.2 Second test configuration: scents and random weights

The second test evaluates different target descriptor combinations. No scent

intensities are considered, and thus tracking depends solely on the target features

stored by each particle. Figure 6.1 shows the four used feature maps. Rule weights

111

Evaluation

are updated at each time step using smooth cosine-interpolated random values,

promoting heterogeneous behaviors.

(b) () (d

Figure 6.1: Scents used by tracking particles: a) RGB color, b) Sobel gradients, c)
Thresholded zero crossings in the Laplacian, d) Simplified LBP codes.

112

The following combinations are considered:

. Scent: color - No intensity. Particles compute a movement vector towards

the most similar region in their vicinity, measured in terms of RGB color

similarity between the color of a particle and image pixel values.

Scent: color and LBP - No intensity. Particles also store the simplified
LBP code of the pixel where they were created, which contains texture
information. Thus, they also look for regions in the image with texture

descriptors similar to those they store.

Scent: color and gradient magnitudes - No intensity. Particles register the
presence of boundaries on the region where they were created. Particles
will be attracted towards target colors placed on boundaries or plain regions

depending on their spawning point.

Scent: color and Laplacian - No intensity. Pixels placed at zero crossings
in the Laplacian of an image are used as edge features, if the gradient
magnitude at those points is higher than 16. Gradient magnitudes below
that value are negligible in most contexts. Zero crossings are interesting

binary features that are quite robust against light and scale changes.

. Scent: color, LBP and gradient - No intensity. Texture and gradients are

combined with color. The use of three scent features for tracking results in

more restrictive searches.

6.2 Sentient ragdoll evaluation

A sentient ragdoll’s tracking activity (A) is evaluated measuring at each frame
the distance between hand-marked objects and the ragdoll structure (see Equation
6.2). This distance considers both the Euclidean distance between the location
of the hand marked object’s centroid 77, and the ragdoll’s centroid A,, and the
difference between the size of the hand marked object m, and the ragdoll’s size
A,.

The centroid of the ragdoll is the average position of all particles in A and its
size is the distance between its centroid and the furthest particle in the structure.
This distance is divided by the size of the hand-marked object, so once again the
error is invariant to the scale of the tracked object. If the ragdoll stays on the

tracked object and both sizes are similar, £(A) values will be close to 1.0.

£(A) = 6.2)

The amount of variables in the ragdoll solution is overwhelming. Both
structural and behavioral parameters must be set to configure a sentient ragdoll:
particle layout, which defines the ragdoll shape; structure elasticity; particle,
template and search window sizes; particle weighting policy; view bank
configurations... In order to focus on the more important aspects of this method,
most parameters were fixed to values that have been found to be appropriate for

most sequences:

e Template and search window: a fixed size of 11211 pixels was used for all
templates. Search windows were defined as three times that size. Smaller
search windows favor object loss, while bigger sizes increase computational

costs.

e View banks: a maximum of three views were considered for each view
bank. While only two views seem to yield similar results when a canonic

view is included, only the use of a third view (or more in larger banks)

113

Evaluation

represents a short-term visual memory, properly registering recently used

patterns.

e Articulated body elasticity: the number of iterations in the constraint solver
step is limited to five. It allows a certain elasticity but also prevents strong

deformations.

e Particle weights: particles masses are defined as the value of the first
minimum of the worst view in the view bank. As explained before, it is
a measure of how different that view is from the currently used one, and

thus it represents the homogeneity of a view bank.

e Particle sizes: ragdolls are created on the initial frame of a video sequence
defining a bounding box enclosing the target. Particles are defined as
squares with sides 20% of the smallest bounding box side long. When scale

salient points are used, their scale is used instead.

e Particle density: both in the grid and KLT layout, particles are not allowed
to overlap more than 50% of their size. In grid layouts, grids are created

using cells which size is exactly half a particle’s side.

Once those parameters are established, twelve different configurations are
evaluated. Four particle layouts are used: simple grid (four neighbors), robust grid
(eight neighbors), KLT, and SURF salient points. Particles created using KLT and

SUREF salient points are linked using the edges of Delaunay triangulation.

Finally, each layout is combined with three template updating policies.
View banks may be updated using contextual information, either completely
replacing views when needed or keeping a canonic view, but no updating at all

1s also considered.

6.3 Use of boxplots

Boxplots are graphs that are built using five descriptive measures computed from

the available data set: median, first and third quartile, minimum and maximum

114

values. Boxplots provide indication of data symmetry and skewness and also

suspected outliers.

Boxplots are useful for comparing data sets side-by-side on the same graph,
and they become especially handy for comparing tracking methods applied to
video sequences that have different durations. Given how tracking quality is
measured, explained in Sections 6.1 and 6.2, boxplots values below 1.0 for the
tracking swarm solution mean that the swarm is inside the tracked object, while
values around 1.0 for sentient ragdolls represent that the size and position of the

ragdoll and the object being tracked coincide.

In a boxplot, the box itself contains the middle 50% of the data. The upper
edge (hinge) of the box indicates the third quartile of the data set, and the lower
hinge indicates the first quartile. The line in the box indicates the median value
of the data. If it is not equidistant from the hinges, then the data is skewed. The
ends of the vertical lines, or "whiskers”, indicate the minimum and maximum data
values, unless outliers are present. In that case the whiskers extend to a maximum
of 1.5 times the inter-quartile range. Finally, the points outside the ends of the

whiskers are outliers or suspected outliers.

6.4 Sequences analysis

6.4.1 Box sequence

The box sequence shows a rigid object being moved in front of a low cost webcam
that returns very noisy images, which are smoothed using a bilateral filter. This
sequence features slight scale changes, out of plane rotations (although all box
sides look similar), motion blur and there exist certain chromatic similarities
between the box and background objects. It contains 387 frames with a resolution
of 320x200 pixels.

115

Evaluation

Swarmtrack

Figure 6.2 shows some frames of the box being tracked by the swarm:

Figure 6.2: Box sequence, featuring a rigid object. Swarm particles face two problems:
color similarity between target object and background objects and sudden velocity
changes.

Using color as the only tracked feature in this sequence is reliable as long as
no gradient-related features are used to modulate scents. Using gradients or KLT
points may attract particles towards background regions where edges are present,
much more if the object suffers motion blur. When motion blur affects the tracked
object its inner boundaries are softened, which contributes to particles leading

towards static background objects with similar chromatic features.

If gradient regions are avoided, using inverted gradient magnitudes as
intensity features, the swarm is able to stay on the tracked object. In this case,
motion blur does not have any influence on tracking. Results obtained when
particles are not flocking at all are relatively good, but just because the box gathers

stray particles as it moves around. Figure 6.3 shows results for this first test.

If gradient magnitudes are not used as scent intensities, but they are part
of the set of features that particles look for, tracking quality is improved. Apart
from some frames where the swarm sticks to the lower part of the box, which
creates some outliers in most boxplots (see Figure 6.4), using more feature maps
to describe preys allows the swarm to stay on the tracked object during the whole

sequence.

116

Swarm, test 1. Box sequence

3 T T T
+
251 B
+
+
+
+
g 2F : i
o :
3 -
g :
S15fF ! 4
@ i
[$] I
& + !
i - . |
T 4 . I
e
| —
et =R-u=aal
‘ C .
| i
i i
!
+ I - - —+ I
ot d d < < X
oo oo cowor cre oo Grad Mo e o F1o¢

conny-

Figure 6.3: Box tracking results using Swarmtrack, first test. The swarm loses its target
when it moves near the face if the used feature combination relies heavily on gradient
magnitudes due to motion blur.

Box sequence

3 T T
25F B
g 7 1
N *
|53
2 i
S 15-F + B
3 ES
o
=
K]
[0}
: = — ;i
J— = _F
i
X — —
i
i ‘ |
I i
+ —+ —+ 4 ——
cowor 00\'\‘BP oo or Lope i \BP fee

Figure 6.4: Box tracking results using Swarmtrack, second test. Richer prey descriptors
produce better tracking results.

117

Evaluation

Sentient ragdoll

Figure 6.5 shows some frames of the box being tracked by the sentient ragdoll.

Figure 6.5: Box sequence, featuring a rigid object. The articulated body has to adapt
to out of plane rotations, blurry object appearances and minor scale changes. The KLT
particles layout is shown.

All configurations allow the sentient ragdoll to follow the box. However, if
the updating policy replaces all templates in a view bank with novel views, grid
layouts fold onto themselves. When original views are replaced and forgotten the
structure is not able to recover its original shape. While folded structures still
follow their target, they no longer fulfill their original purpose, as most particles
are tracking the same view. This effect is stronger on the simple grid (SGRID in

6.6), because its structure is less rigid.

Structures created from a Delaunay triangulation of KLT or SURF points
are much more rigid. Contrary to grid-like structures, placing particles irregularly
(and establishing links between them created from the Delaunay triangulation)

prevents folding.

118

25F

distance / object size
&)
T

Ragdoll. Box sequence
T T T T

i
05p |

=

3

=

m-———HH

B

2

=

-
|
I
|
|
|
|

=

=

1
1
|
+

;

x
1
|
|
I
|

8

g
o
o GV“\O e
Sch

e o e®
O e R\
wo¥ QO s Wwe POV ex
oo ® 0::0 o
J

We

e

v

o 3e®
‘\‘ wo W Wt

W
-

We

¥

&

W g

o

¢ W

g
¥

S (9e®
o
eV

3
\Y

o

+
|
I
I
!
‘
1
&

\C
W k(;a“o“\

Figure 6.6: Box tracking results using the sentient ragdoll. Most configurations are able
to track the object successfully. However, grid layouts with complete bank updating end

up in folded structures.

119

Evaluation

6.4.2 Hand sequence

This sequence is similar to the previous one, but the tracked object is a moving
and gesturing hand. Its skin color is shared with two non-target objects, the face
and the arm, so the two main difficulties in this sequence are color similarity
with background objects and the continuously changing shape of the object. This

sequence contains 579 frames with a resolution of 320x200 pixels.

Swarmtrack

Figure 6.7 shows some frames of the hand being tracked by the swarm:

r iﬁ) .’&"‘\. i |

-

e

norway

Jall | ¢

Figure 6.7: Hand sequence, featuring a highly deformable object. Hand’s colors are
similar to face’s color, which may attract particles when the hand moves near the face.

At some point in this sequence the tracked hand moves in front of the face.
While the swarm could easily stick to any of both objects, and indeed some
particles stay on the face, most of them are correctly placed on the hand and
attract those that stay behind. Particles have a certain momentum that pushes
the swarm in the direction of previous movements, granting the swarm a weak
predictive capacity. A similar situation occurs in the box sequence. However, in
that case, the tracked object stops for a while losing momentum. When the box

starts moving away from the face, particles are not able to leave the region.

No scent intensity combination seems to be significantly better than other,
as shown in Figure 6.8. Once again, the object gathers stray particles as it moves

around when no flocking is used.

120

Using combined scent features produce even better results, with tracking
distance error medians below 0.5. However, when Laplacian edges are used or
LBP and gradient magnitudes are combined, particles seem to prefer tracking the
arm instead of the hand in the latter frames of the sequence, creating the outliers

shown in Figure 6.9.

This effect occurs because the region where the swarm was initially created,
the palm of the hand, did not contain strong gradients. As the hand varies its
gesture, gradients and new textures appear when fingers cover the palm. At some
point, particles find that the arm region, where no gradients are present, is more

similar to what they should be tracking and switch their object of attention.

121

Evaluation

Swarm, test 1. Hand sequence

3 T T T T
25F B
[} 2F B
N
(0]
Q
2
8 15l i
> kS
g
s *
ho =+ — +
el + —
1 | -
! |
! |
! i
! 1
=== |
i
| T
! ! i i ! !
i
1 i - —= 1 —+
covor co® \ Gra o 0\‘\(\:‘ MoV K Wo Flock
conY-

Figure 6.8: Hand tracking results using Swarmtrack, first test. The swarm is able to
overcome the presence of a similar object in the background thanks to steering behaviors
and gained momentum.

Gestures sequence
T

25

A+ -

H HHHHH-H

distance / object size
(4]
T

i

I + |
S £ i
05 I 1 : R
— L L
| . \
I 1 I 1 I
| 1 | 1 |
) d. 3 .
ol coMB® coor O o 0\'\,30\20‘6“ conLB? cred

Figure 6.9: Hand tracking results using Swarmtrack, second test. In the latter frames of
the sequence, particles seem to prefer the arm to the hand, producing many outliers.

122

Sentient ragdoll

Fig 6.10 shows some frames of the hand being tracked by the articulated visual
body.

Figure 6.10: Hand sequence, featuring a highly deformable object. Hand’s palm does not
show many good features to track. The articulated body may thus easily fold onto itself.

This sequence is an example of how particles lose their target if they are
allowed to replace all their view bank when updating. The three most rigid
configurations (8-neighbor grid, KLT and SURF) stick to the face when the
hand moves in front of it, as all particle views drift away from the original hand
appearance. The 4-neighbor grid, however, manages to follow the target, which
may indicate that flexible structures are more able to adapt to changes than rigid

structures.

Sentient ragdolls with KLT and SURF layouts track the hand even when this
sequence also shows a weakness of many salient point detectors: the region where
the articulated body is defined, the palm of the hand, does not contain many salient
features. Thus, created ragdolls do not contain more than half a dozen particles,

which leads to unstable tracking results (shaky centroid and body orientations).

The best result is given by the rigid grid layout configuration using canonic
views. However, as shown in 6.10, the ragdoll is not able to keep its shape and
almost folds onto itself. Once again, the lack of features within the palm is the

reason for this effect.

123

Evaluation

3 Ragdoll. Hand sequence
T T T T T s

25K

R

N
T
I

distance / gbject size
&
T
H# 4 ++
L

i
i
+

1
1*8‘§ iﬁ*%
RN =R R ATS N S N
i ge0dliastls

088 088 00 o0 (99 o (08% (98 o
O O

o o R
My Nee NS o P ‘Ao“") (S aagie:
s SR
< O°
'

%\3?& e o
S

WO a0 e WO o0V e
PP O o P =

Figure 6.11: Hand tracking results using the Sentient ragdoll. Rigid configurations (Grid,
KLT and Surf) using complete view bank updating stick to the face when the hand moves
in front of it. Grids with no updating or those using canonic views yield better results.

124

6.4.3 Crossing pedestrian sequence

This sequence features a pedestrian crossing a street, seen from a far away camera.
The pedestrian is relatively small in relation to the image size, its colors are similar
to those of the background and images suffer strong JPEG compression artifacts
(which, thanks to the bilateral filter applied to all sequences, are softened). At
some point, the pedestrian is slightly occluded by some hanging cables. This

sequence contains 188 frames with a resolution of 320x200 pixels.

Swarmtrack

Figure 6.12 shows some frames of the pedestrian being tracked by the swarm:

Figure 6.12: Crossing pedestrian sequence, featuring a small object which color features
are similar to the background. While particles may feel attracted to background objects at
some point, flocking behavior keeps them together.

Flocking is crucial in this sequence, leading particles to keep together
moving around the target and following it until the end of the sequence. All scent-
intensity combinations allow the swarm to follow its target successfully, except
when no flocking is used. The colors of the tracked object are distinctive enough,

but they do not prevent particles from moving away looking for similar targets.

Adding more scent features also yields good tracking results, as shown in
Figure 6.14. The target contains many strong gradients and salient points, so

feature combinations including gradient and KLT points behave well.

125

Evaluation

Swarm, test 1. Pedestrian sequence
T T T

distance / object size
[4)]
T
L

| |
7 i
osk | + i o : g
3 = —
— ‘
‘ .
; N N
0 I 1 1
\of 3 2l VX it X
co Co\Cr@ coon™ OF oo\‘\‘\ . G‘ad»‘\'\“‘\(o F1o°
O\

Figure 6.13: Crossing pedestrian tracking results with Swarmtrak, first test. Because the
tracked object’s colors are relatively different from the background and the object contains
many strong gradients and KLT points, all methods are able to track it successfully. When
no flocking behavior is used, however, particles stick to background patches and the object
is lost.

Pedestrian sequence
3 T T T

25 b

distance / object size
(93]
T
L

i
05 |

Figure 6.14: Crossing pedestrian tracking results with Swarmtrack, second test. Results
are also good when more features are tracked.

126

Sentient ragdoll

Figure 6.15 shows the pedestrian being tracked by the sentient ragdoll.

Figure 6.15: Crossing pedestrian sequence. The target contains many salient features that
should be easy to track.

This sequence is an example of why a pattern matching based tracker, even
using context-based updating, may drift away from the original appearance of its
target. Once again, the target is lost if particles are allowed to replace all their view
bank. As the pedestrian crosses the street, its shape changes slightly (his arms and
legs move), but the plain grey background is almost constant. Templates from the
pedestrian’s outer parts contain background. When these templates are matched
against the search window, those parts with background (that is, those parts that
do not change significantly) produce better matching results. When templates
are updated, they slowly include more and more background until they finally
substitute the original patch with background views. These particles build up
mass, because all their views look similar, so they finally pull from those particles
that may be correctly following the right target.

Canonic views prevent original appearances to be forgotten and avoid
templates from drifting towards plain background views while particles are still
allowed to adapt to appearance changes. Configurations using the SURF detector
fail because not enough points are found in smaller scales. Most salient points
are found in scales that also include background, and thus particles end up losing
their target, as shown in Figure 6.16.

127

Evaluation

3 Ragdoll. Pedestrian sequence
T T T T T T T

4

25K

N
T
- HHHE

distance / gbject size
&
T

-

DEEE

SR

- (-t
= \———Di:l——————————————{ W+

H
!

Il

Y e xS M xS \Gd

o0 WO \)\"\';0 \)Qéa\e*oa‘\i\ﬁo oW et
© e el \

e ® N

s
? o
- ¥

SV e “:o“"’&;i °°6a\i oo
\:ﬂ o g€ 5\‘3@? N
)
Figure 6.16: Crossing pedestrian tracking results with the sentient ragdoll. Configurations
with complete view bank updating, once again, lose the target. SURF configurations fail
because the object is too small to find enough scale salient points.

128

6.4.4 Skier sequence

A fast moving skier descends a slope in a zigzag movement. Although his yellow
cardigan stands out from the white background, his fast movements may become
a complication for methods based on local searches. This sequence is the shortest

one, with only 66 frames with a resolution of 320x200 pixels.

Swarmtrack

Figure 6.17 shows the skier being tracked by the swarm.

Figure 6.17: Skier sequence, featuring a fast moving object. Although target’s colors are
very distinctive, its fast zig-zag movements are difficult to track.

The swarm has no problems at all following its target even though its fast
speed. The distinctive colors of the target, strong gradients and high number of

salient points allow particles to follow their prey pixels successfully.

For fast moving objects like the one shown in Figure 6.17, most tracking
approaches based on local searches need a search window big enough to keep up
with object speeds. However, in the present approach, as far as enough particles
find their target they may attract the rest of the swarm. This effectively increases
the search space, even when the search space of each single particle is not big

enough to cope with high speeds.

Using more restrictive scents combinations also results in successfully

tracking, as shown in Figure 6.19

129

Evaluation

Swarm, test 1. Skier sequence

3 T T T T
25F B
o 2F]
N
(0]
©
2
3 15 o
3 +
I M
i,
-/ + -
- - | o 1
0.5+ i ! g i i
| 5 i T i !
ol -] T — L ——
coor c0\G@ o ¥ oKV oY ‘\(\J o Flock

Figure 6.18: Skier sequence tracking results with Swarmtrack, first test. All swarm
configurations track the object successfully.

Skier sequence
T

25 B

distance / object size
«a
T
1

J— + + —_
i J— —_ |
JE— | I | i
= 2 ‘ =2 =3]
| i | ! !
I} _ 1 -
0 : ‘
14 . 5
o colLP olor. &2 co Lapes?® L BP O

Figure 6.19: Skier sequence tracking results with Swarmtrack, second test. All swarm
configurations track the object successfully.

130

Sentient ragdoll

Figure 6.20 shows the skier being tracked by an articulated visual body.

Figure 6.20: Skier sequence. Fast moves make it difficult for most particle layouts to track
the object properly.

Most configurations seem to chase the target, although it is difficult because
of its fast speed. However, both grid configurations with no updating mechanisms
completely fail at tracking, losing the target shortly after the first frame. Grids

contain many patches created in plain yellow regions, which are difficult to track.

KLT and SURF configurations with no updating, on the other hand, are
able to track the object because they focus on salient features. SURF yields best
results thanks to particles performing tracking at different scales concurrently,

which allows the ragdoll to cope with speed.

131

Evaluation

Ragdoll. Skier sequence
T T T T

distance / object size
(4]
T
L

EELLIO
L EEdTEak L

0 L 1 L L 1 L Il 1 L 1 1 L
da\e da\e o‘\‘\G Q«a\e éa\e o‘(\G da\e 6’6\2 <>(\\C;
R\ W et N\ NN\ Ny Nagie-
0@0“0 o \)Qaa\e* 0@\0“0 0?3009&\9* s ot o 0 @ W N \W‘m\ek
< P\l GV“\O \,\\;\ S 5\)9&
e

- T
pEE
-0 -

0

Figure 6.21: Skier sequence tracking results with the sentient ragdoll. Both grid
configurations with no updating mechanisms are not able to adapt themselves to the
target’s movement. Best results are achieved with SURF configurations, because searches
are performed at different scales.

132

6.4.5 Girl sequence

This sequence features a girl playing with her newly acquired webcam. She is
testing the camera software’s ability to track faces and keep subjects in plane, so
she moves around and makes faces. Due to her movements, her face suffers scale
changes, out of plane rotations and even goes out of view. The tracked object in
this sequence is quite big in relation to image size. This sequence contains 873

frames, sized 320x200 pixels.

Swarmtrack

Figure 6.22 shows some frames of the girl’s face being followed by the swarm.

L

Figure 6.22: Girl sequence, featuring a large object. The swarm wanders within the
tracked object.

All scent-intensity combinations allow particles to track their target
successfully. However, given the big size of the tracked object and its
homogeneous chromatic features, particles may wander within its image space
(e.g. at some point the swarm is located on the forehead and some time later the

swarm is placed on a cheek).

When more restrictive features are used to describe preys, particles are able

to stick to facial landmarks reducing the wandering effect.

133

Evaluation

3 Swarm, test 1. Girl sequence
T T T T

distance / object size
[4)]
T
L

.
of T & | T |]

I
! I
= — —
I
: — ! : ! :
L \ 4 4 1 1
cowof co® o [y CO\‘K\‘TV oY K No Flock
cone

Figure 6.23: Girl sequence tracking results for Swarmtrack, first test. Even with no
flocking behavior most particles are able to stay within the object, because the hair clearly
limits its region.

Girl sequence
3 T T T

25 bl

distance / object size
(4]
T
L

N .
+ + N H
05r i T | e !]
| : | | |
L L L = .
)Y d. 3 .
ol coMB® coor O o 0\'\,30\20‘6“ conLB? cred

Figure 6.24: Girl sequence tracking results for Swarmtrack, second test. Using more
features for tracking, the swarm is able to stick to facial landmarks and reduce the
wandering effect.

134

Sentient ragdoll

Figure 6.25 shows the girl’s face being followed by an articulated visual body.

Figure 6.25: Girl sequence. The tracked object contains many good features to track,
but some out of plane rotations, scale changes and complete occlusions (when the object
leaves the scene for some frames) represent a challenging situation.

Complete view bank updating, once again, leads to object loss. Facial
views are slowly replaced with dark hair patches because their plain features are
easier to match. In the second half of the sequence, all original templates have
been completely substituted. Configurations using canonic views overcome this

problem because particles are able to recall the appearance of their original target.

The ability of sentient ragdolls to recover their original shape stands out
when particles do not update at all or, to a lesser extent, when canonic views are
used. When lighting conditions are constant and the appearance of targets does
not change permanently, objects can be tracked without updating. If view banks
contain a proper representation of their original target (either canonic or properly
updated), the structure is able to quickly recover from strong deformations, as seen
in Figure 6.25. The use of canonic views allows a certain degree of adaptation to

changes, but also slows down shape recovery.

135

Evaluation

Ragdoll. Girl sequence
T T T

® T ! T

o 2f o | E E L b

sli) 7 e s WO

TUwoL T H T
§ S i | ot |

L eV BalEaTH
A R S O

088 088 00 o0 (99 o (08% (98 o
O O

\e 2@ A
e o e W 0¥ aed
AW PO e oGO g W RS e e o
e oV @ 20V N Y e P
=9 G E

Figure 6.26: Girl sequence tracking results using the sentient ragdoll. Once again, all
configurations using complete view bank updating fail. Fast object movements produce
templates drifting towards hair regions.

136

6.5 Other methods

The best configuration of each method for each sequence are tested against two

tracking methods: Opentracking and Camshift.

Figure 6.27: Frame examples from each method. From left to right: Swarmtrack, Sentient
ragdoll, Opentracking and Camshift.

OpenTracking (Guerra, 2002) (Guerra et al., 2005) is the pattern matching
tracking method that each particle uses independently in the sentient ragdoll
solution. Therefore, it is similar to a one-particle ragdoll tracker with just one
view in the visual memory. While relying on simple local searches for template

matching, it proposes a sensible context-based template updating policy.

Camshift (Bradski, 1998) (Allen et al., 2004) is a modification of Meanshift,

a robust nonparametric technique for climbing density gradients to find the mode

137

Evaluation

(peak) of probability distributions. In Camshift, the mean shift algorithm is
modified to deal with dynamically changing color probability distributions derived

from video sequences.

These two methods have been chosen because they are algorithmically
similar to proposed solutions. Swarm particles, while looking for prey pixels,
follow a hunting behavior that leads them towards regions showing a higher
density of desired features. Therefore, they perform a peak search which is similar
to how the mean shift algorithm seeks distribution modes. Ragdoll particles are
based on OpenTracking, so comparing the efficiency of a single-particle tracker
with that of the articulated visual body was necessary in order to highlight the

advantages of population-based method.

Figures 6.28, 6.29, 6.30, 6.31 and 6.32 show the boxplots of the best
configuration of each swarm against OpenTracking and Camshift for the same

sequence.

Bic sequence

25F

>—=<

distance / object size
w
Il

05

il

L — — L L
Swarm color Rag KLT Update Canonic OpenTracking Camshift

Figure 6.28: Swarmtrack and Sentient ragdoll compared to OpenTracking (single pattern
matching using context-based updating) and Camshift with the Box sequence.

138

Gestures sequence

25

distance / object size
«a
T

0.5+

|
Swarm color Rag KLT Up

date Canonic OpenTracking

L
Camshift

Figure 6.29: Swarmtrack and Sentient ragdoll compared to OpenTracking (single pattern

matching using context-based updating) and Camshift with the Hand sequence.

Girl sequence

distance / object size
w B
T T

N
T

&=

=

&
——

1 1 Il
Swarm color Rag KLT Update Canonic OpenTracking

Il
Camshift

Figure 6.30: Swarmtrack and Sentient ragdoll compared to OpenTracking (single pattern

matching using context-based updating) and Camshift with the Girl sequence.

139

Evaluation

distance / object size
w N

N

Pedestrian sequence

+
I
I

+

+

+

. — .

EJr |

; |

Il Il Il f

Swarm color Rag KLT Update Canonic OpenTracking Camshift

Figure 6.31: Swarmtrack and Sentient ragdoll compared to OpenTracking (single pattern
matching using context-based updating) and Camshift with the Pedestrian sequence.

distance / object size

25

0.5

Ski sequence

L
Swarm color Rag KLT Update Canonic OpenTracking

|
Camshift

Figure 6.32: Swarmtrack and Sentient ragdoll compared to OpenTracking (single pattern
matching using context-based updating) and Camshift with the Ski sequence.

140

OpenTracking suffers the same problems that have been previously exposed
for the ragdoll solution: updating may lead to object loss, as it happens in the
Pedestrian sequence. In most occasions, the initial location of the tracker is
critical: it must be placed on a clearly distinguishable region. Otherwise, the
tracker will easily drift away, as it happens in the Girl sequence when the tracker
is not placed on the bridge of her nose (where it captures part of her eyes and
eyebrows). However, no updating at all is even worse, with the tracker not being
able to follow its target for more than a few frames. The proposed ragdoll solution
inherits these problems, but only partially. It is much less sensitive to the initial
placement of the tracker because, while some particles may be wrongly placed,

many others may still capture useful patterns.

Camshift is a powerful tracking method that calculates the color (e.g.
hue component) probability distribution of the tracked object within the search
window, and it is able to adapt to scale changes. As a method based on color, it
suffers from certain weaknesses that are unavoidable if no structural information
is used. If the tracked object shares chromatic features with background objects,
Camshift (and Swarmtrak, or any other method based on color), may fail. In the
box sequence, the tracked region grows from its initial size until it encompasses
both the box and the whole arm. Something similar happens in the hand and

pedestrian sequence.

141

Evaluation

6.6 Discussion

The essence of Swarm Intelligence, that is, the use of distributed and self-reliant
entities which collaborate unknowingly to achieve a complex task, has been
successfully applied to the problem of object tracking in video sequences. While
object tracking in its most general form has not been solved yet and both proposed
approaches have their own weaknesses, new perspectives have developed for

research.

Swartrack, the solution based on boids, is especially suitable for tracking
highly deformable objects. Due to the lack of structural constraints, the swarm
is able to adapt to any underlying shape and track it as long as its appearance is
distinctive enough. However, objects will be probably lost if their share chromatic
features with nearby image regions because current particles are guided almost
exclusively by color. Moreover, they lack a feature updating mechanism, so any

appearance change will not be properly registered.

Nevertheless, multiple image features can be used to strengthen the method.
While some features like gradients and textures work better as object descriptors,
other features like movement and figure/ground segmentation can be used to
weight search regions. The combination of multiple features is crucial to
overcome situations where certain image measures may be unreliable. Gradient
based features, for example, are not useful if motion blur is present (which greatly
depends on the quality of the image capture device), because boundaries become
blurry when objects move. The negative effect of motion blur could be cancelled

if other features like color and optic flow may take lead.

While the size of the search window of each particle is relatively small,
the combined effect of all search windows and steering behaviors increase the
swarm’s search space. Thanks to this property, tracking swarms are able to
overcome partial occlusions and keep up with fast moving objects as lost particles

are guided by the rest of the swarm.

Among all scent-intensity combinations, tracking swarms using color and

dynamic rule weights seem to perform best. While object tracking based on

142

chromatic features with no template updating is not reliable at all, it is still useful
under controlled environments. Dynamic rule weights produce swarms that can
be used in broader contexts, contrary to static weights which values must be found

empirically.

Sentient ragdolls applied to tracking offer a blend between the free roaming
particles of the pure swarm approach and rigid template tracking solutions. While
sentient ragdoll particles perform their tracking activity independently, they must
comply with the internal constraints that shape the structure. This awareness of its
own conformation allow sentient ragdolls to push stray particles to their correct
relative position within the structure, effectively recovering their original shape

after strong deformations.

Elastic structures seem to perform better than rigid configurations, because
particles enjoy greater freedom of movement. However, the number of iterations
of the constraint solver should be chosen carefully in order to obtain an adequate
degree of elasticity. It should allow particles to perform their tracking activity with
ease, but it should also allow the structure to recover its shape after deformations.

Five iterations seem enough to achieve this goal.

Particle layouts based on space-scale salient points are suitable for tracking
objects at different scales concurrently. While some particles focus on small
details, other particles perform a more general tracking activity looking for the
object as a whole or locating big pieces of it. Tracking is strengthen with this

approach.

The most influential parameter affecting both the tracking activity and a
sentient ragdoll’s shape recovery ability is the template updating policy. The
currently adopted scheme based on context is suitable for short-term tracking
activities. While it is much more robust than other template updating techniques, it
does not prevent particle from replacing all views with strange templates. Sentient
ragdolls with irregular layouts may overcome this problem, but not indefinitely. In
a general setting, as soon as adverse circumstances meet, the tracked object will
be lost.

Is updating really necessary? If an object is being tracked through the sum

143

Evaluation

of its parts, using solutions based on swarms, articulated rigid bodies or something

similar, is it necessary to update each part in order to track the object properly?

If a face is being tracked and the tracker is created initially on a frontal view,
when is updating required? If local features change (e.g. blinking eyes or a mouth
while talking), there are still parts like eyebrows or noses that are more or less
constant. If the face performs an out of plane rotation, half the face is still visible,

and those particles tracking that part can do it properly.

If light conditions change, is updating required? Would not it be more
adequate using a light invariant region descriptor? But what if the head completely
turns around? Should it still be tracked? Isn’t it a completely new object? It is,

semantically, part of the same object, a head, but not a face anymore.

The used template updating solution can deal with changes but, obviously,
only if tracking is successful. If the tracked pattern changes its appearance
drastically, the currently used pattern matching method may not be able to locate
it. The best matching position may not be right, and thus the updating mechanism

will also fail, adding a strange view to the view bank.

This problem seems unavoidable with currently used color based
descriptors. An example of this situation could be a pedestrian who walks into
a dark shadow. While the transition may be smooth, his color features change
drastically. Tracking may or may not, depending on surrounding context, locate
the new target’s position. If it does it properly, the updating mechanism may
incorporate new templates to the view bank, registering how the pedestrian’s
appearance darkens. Otherwise, templates will drift away from the current

object’s appearance, as seen in Figure 6.33.

However, such an evident appearance change is not necessary for the
updating mechanism to fail. If the tracked object varies while moving, due to
internal deformations or motion blur, tracking may drift towards more stable
regions. That way, the tracker may wander within the tracked object or, at some

point, reach its boundaries and completely abandon it, as shown in Figure 6.34

Updating must be tackled carefully in a tracking system, if the tracker is

144

Figure 6.33: Dirifting template. Due to strong appearance changes, the updating
mechanism adopts strange views and loses the target.

Figure 6.34: Drifting template. Tracking drifts towards low variation regions.

not supported by a detection system or any other confirmation method that avoids
templates to drift away from reliable views. For most systems, it seems preferable
not to update at all and rely on invariant descriptors, in order to have reliable

measures about whether the target object is still being tracked or not.

145

Conclusion and Future Work

7.1 Conclusion

N this thesis, the topic of Swarm Intelligence applied to computer vision,
I and more specifically to real-time object tracking in video streams, has been
addressed. The main part of this work has focused on proposing and building
two novel swarm-based solutions that are able to track visual objects in video
sequences in a wide variety of real-world scenes. The first model considers a pure
swarm structure which members are guided by psycho-social factors in a prey-
predator metaphor, while the second model proposes a swarm which individuals
are subject to structural constraints that shape an elastic structure. Quantitative
experimental results confirm the suitability of both methods for many different

working conditions.

It should be emphasized that the ultimate purpose of the present work
consists on the general application of swarming techniques to computer vision
tasks, that is, the solution of computer vision problems using multiple individual
and relatively simple agents working independently, collaborating locally to

achieve a task that is much greater than individual capacities.

The work described in this document can be summarized in the following

conclusions:

147

Conclusion and Future Work

148

e Swarm Intelligence and population-based solutions are inspired by

biological models. Approaches based on social insect behavior have proved
to be especially suitable for distributed control and optimization algorithms
in a wide range of applications. While some approaches consider detailed
theoretical models of the creature, group or activities they simulate (e.g.
pheromone lay and evaporation rates), many others rely on a powerful

metaphor (e.g. PSO and Genetic algorithms) to achieve successful systems.

Approaching a problem through metaphors usually results in lateral
thinking, and may allow finding creative solutions which would have
not been considered otherwise. Through metaphors, problems can be
remodeled into similar but unrelated situations. Once the original problem
has been temporally substituted, attention can be focused on solving the
meta-problem. Finally, generated ideas are back-mapped and adapted to the
original task, if possible. This procedures are extensively accepted in arts

and design, where creativity is crucial (Casakin, 2007).

Scarce references are found in literature where Swarm Intelligence is
applied to find solutions to computer vision problems in real time. The
application of Swarm Intelligence to computer vision tasks creates new and
stimulating approaches to visual problems, opening a relatively unexplored
field. As swarm members focus on their own jobs, carefully designed to
be relatively simple and self-reliant, solutions to complex problems emerge
exploiting synergy and/or stigmergy. Tracking emerges from social and

physical interactions between individuals.

Most object tracking solutions found in literature rely on a single optimum
to locate the new position of the tracked object, rejecting alternative
locations. Thus, tracking is usually resumed at each time step from a single
previous position. Approaches based on Swarm Intelligence may exploit the
distributed nature of swarm members to track object parts, different object

representations or multiple objects simultaneously.

7.2 Main contributions

In summary, the work described in this thesis made the following contributions:

1. An introduction to population and swarm-based methods, including genetic
algorithms, ant colony optimization and particle swarm optimization (PSO).
Differences between the proposed tracking swarm and PSO were discussed.
While both methods are noticeably similar, the main advantage of our
model lies in the possibility of considering heterogeneous populations. Our
swarm members may adopt different tasks, working procedures and even

perceptual abilities, but still collaborate towards a single common goal.

2. A review of proximal object descriptors and tracking methods. Object
tracking literature is plagued with a large amount of solutions, and
most of them are designed for specific situations. Although this work’s
contributions do not solve the general tracking problem, they offer a suitable

alternative to classic methods in a wide variety of scenarios.

3. A novel swarm tracking solution derived from a predator-prey hunting
metaphor and the psychosocial behaviors simulated by a computer model
of coordinated animal motion, as defined for Craig Reynolds’s Boids
(Reynolds, 1987). Predator particles composing the swarm extract a
set of features to be tracked from the image region that encloses the
target object. Then, during the following video frames, each particle
will track its own target independently, although subject to three steering
behaviors: Cohesion, Alignment and Separation. The location and velocity
of the tracked object emerges from the weighted swarm’s centroid and the
weighted average of all predator particles. The main features of this method

include:

(a) The complete independence of particles in relation to the adopted
tracking method: each particle may use any tracking method found
in literature, contrary to PSO solutions where all particles must share
the same technique. This allows the creation of heterogeneous swarms

which attention may spread through a wide variety of image features.

149

Conclusion and Future Work

(b) Thanks to this independence, each particle’s tracking activity can
be computed in parallel, making the best of current multi-core
architectures. This would allow the creation of heavily populated
swarms, ideally increasing the robustness of group decision or mode-

based processes.

(c) Steering behaviors do not impose structural constraints. While
different rule weights may create organized groups that behave like
a flock or school, or chaotic swarm-like dynamics, particles’ relative
positions are not fixed. They may roam freely in the image space, and
thus Boids become suitable for tracking objects with any degree of
non-rigidity.

(d) Tracking methods based on local searches may lose fast moving
targets and occluded objects. While tracking swarms using local
searches also suffer this condition, the search space is effectively
increased to encompass the whole region covered by the swarm. That
way, fast objects can be tracked even when small search windows are
used, and complete and partial occlusions may be overcome if enough

particles find their target and attract the rest of the group.

4. A novel tracking solution based on elastic structures that are composed by

150

particles linked by infinite stiffness springs (also known as ragdolls). They
can be considered swarms which particles suffer structural constraints and
which, therefore, are forced to keep a fixed relative position in the group.
The adopted solution is based on the work of Thomas Jakobsen (Jakobsen,
2001), who proposed a robust physics engine where particle dynamics are
simulated using a Verlet integration method and constraints are solved in an
iterative process. These structures are extensively used in the videogame
industry to simulate articulated rigid body dynamics thanks to their relative

simplicity and low computational cost.

The proposed solution adds forces and projections that are governed by an
underlying visual task, allowing the ragdoll structure to interact with images
and video sequences. In this work, this scheme is applied to object tracking,

so the sentient ragdoll is able to track objects in video sequences while

trying to maintain its shape. The adopted radgoll physics system has the

following characteristics:

(a)

(b)

(©

(d)

(e)

Internal constraints (links between particles) define the shape of the
structure. External constraints (forces and projections created by an
underlying visual task) move and deform the structure in the space
created by digital images. Deformed structures recover their original

shape as internal constraints are satisfied.

Each particle’s visual task is self-reliant. Particles composing a
sentient ragdoll try to fulfill their own objective independently, and
thus the structure may contain particles with heterogeneous tasks (e.g.
some particles may act as object detectors while other particles act as
trackers). Once again, given their individuality, particles’ visual tasks

are highly parallelizable.

The Verlet integration method avoids particles from building up
velocity, so no errors are accumulated. That way, particles that are
projected to a new location simply adjust their velocity accordingly.
This also allows the system to converge to the correct state over
consecutive time steps, correcting positions incrementally. It is
especially useful in video sequences, where the structure evolves from

frame to frame.

In the proposed tracking system, particles store their target’s
description as a collection of color planar patches. Tracking becomes
a pattern matching process where templates are updated using
contextual information. However, even a sensible template updating
mechanism is prone to errors in a pre-categorical system, where it is

difficult to obtain a measure of the tracking quality.

The shape-preserving ability of ragdolls allows the structure to push
particles to their right relative position within the structure no matter
how much it is deformed, recovering its original shape. Increasing
degrees of rigidity can be obtained simply increasing the number of

iterations in the constraint solver process.

151

Conclusion and Future Work

5. An in-depth study of decentralized tracking systems, using the two

previously proposed contributions: a swarm of free roaming tracking
particles subject to steering behaviors and a swarm of linked tracking
particles that manages to preserve its shape (i.e. a sentient ragdoll). While
both systems are able to track their targets in a wide variety of situations, it
must be concluded that pre-categorical object trackers may lose their targets
due to a variety of unavoidable circumstances: sudden velocity changes,
complete occlusions, appearance changes or background object similarities,

to name a few.

While decentralized tracking systems offer many advantages in these
situations, it is not trivial to tell apart when a pre-categorical tracking
system is still correctly following its target. Therefore, no such system can
be reliable under uncontrolled working conditions for long time periods.
Fortunately, both proposed swarming methods are general enough to be

used in many different settings.

7.3 Future Work

There are still many lines of work that deserve attention:

1. Alternative pathway exploration: in their tracking process, ragdoll particles

152

examine their local neighborhood looking for the location of their target,
and then they move to this position. This location is currently unique,
as particles choose the optimum point in the search window according to
the template matching score. However, many local optima can be found,
although most of them are currently ignored. These local optima represent
objects in the search window which appearance is similar to the tracked
object’s appearance, something which is exploited by the template updating
mechanism. But all these local optima could also be considered alternative
locations of the tracked object. These optima could be considered in
order to explore alternative target locations. New tracking particles could

be spawned at these points and, in order to keep a limited number of

individuals, particles could be killed under certain conditions (e.g. age,
health or local population density). That way, particle colonies would
evolve in a life-death process that would ideally keep them over the tracked

object.

. Use of automatic discriminative features extraction: instead of using a
predefined set of features to describe the tracked object, tracking particles
could decide at each time step which features differentiate the tracked object
from the surrounding context. This ability would, ideally, allow particles to

adapt to changing conditions.

. Consider new constraint types in the ragdoll model. Currently, only distance
constraints are considered, but new types like angular and soft constraints
could be easily included (i.e. constraints that limit angles between particle
pairs and constrains that are only allowed to solve a portion of the suffered

deviation at each time step).

. Compound swarms. Dozens of independent tracking particles interact to
create a single tracking entity. Could dozens of these entities interact
to create a superorganism? Moreover, such a superorganism could be
composed of heterogeneous entities, that is, entities with different goals,
procedures and rules. For example, some entities could be devoted to

feature or object detection while others could be specialized in tracking.

The two proposed swarming solutions can be combined to create compound
swarms in four different ways: swarm of swarms, ragdoll of swarms, ragdoll
of ragdolls and swarm of ragdolls. While the first three options offer
complex structures with increasing degrees of rigidity and deserve special
attention, preliminary results with the fourth one indicate certain structural

instability.

. New applications for the sentient ragdolls. These structures could also be
used to analyze gestures and poses of articulated or deformable objects
like faces, hands and human bodies. Predefined ragdoll structures that
mimic the studied object shape (e.g. a human-like skeleton or constraints

defined to shape a hand or a face) combined with acquired knowledge

153

Conclusion and Future Work

154

of the considered object seems a promising line of work. Like Natural
Motion’s Dynamic Motion Synthesis and similar techniques (Shapiro et al.,
2007) (Arikan et al., 2003) (Ngo and Marks, 1993), which imbue ragdolls
with artificial intelligence to give them self-awareness and self-preservation
behaviors, sentient ragdolls could be trained to model the dynamics and

appearance of the object they represent.

In general, the application of Swarm Intelligence to computer vision
problems should be studied with more detail, considering its use in
segmentation, detection, identification, image stabilization, homeostatic

processes and many other visual tasks.

Part 11

Inteligencia de Enjambres
en Vision por Computador.
Aplicacion al Seguimiento de

Objetos

155

Inteligencia de Enjambres en Vision por

Ordenador

8.1 Objetivos

El objetivo de la presente tesis consiste en la estudiar la aplicacion de
la Inteligencia de Enjambres a la Visiéon por Ordenador, concretamente al
seguimiento precategdrico de objetos en secuencias de video. Los objetivos de

la tesis incluyen los siguientes puntos:

1. Presentar una breve introduccién de la Inteligencia de Enjambres y a la

Vision Artificial.

2. Revisar el estado del arte del seguimiento de objetos en secuencias
de video. Se analizardn las definiciones de objetos en el espacio
bidimensional que constituyen las imdgenes digitales, incluyendo sus
diversas representaciones, descriptores y distintas técnicas de deteccion.
Se revisaran técnicas de seguimiento de objetos seglin su representacion,

incluyendo el seguimiento de puntos, de nucleos (kernel), de siluetas,

157

Inteligencia de Enjambres en Vision por Ordenador

158

contornos y modelos flexibles.

. Presentar una introduccion a la vida artificial y a los modelos de enjambres

artificiales aplicados a la resolucion de problemas numéricos, cubriendo
técnicas como los algoritmos genéticos, la optimizacién por colonia de
hormigas y la optimizacién por enjambres de particulas. Revisar el estado

del arte de la aplicacion de técnicas de enjambre a la vision por ordenador.

Disefiar e implementar dos sistemas basados en enjambres capaces de
seguir objetos en secuencias de video, abordando cada sistema de manera
distinta pero complementaria: enjambres de particulas libres y enjambres

de particulas sujetas a restricciones estructurales.

. Evaluar los sistemas implementados sobre secuencias de video

significativas que representen los problemas habituales a los que se enfrenta
cualquier sistema de seguimiento de objetos (cambios de iluminacidn,
ocultamientos parciales y globales del objeto seguido, cambios de escala,
etc.). Comparar su ejecucion con los datos aportados por la anotacién

manual de la localizacion y tamano del objeto a seguir en cada secuencia.

. Presentar las conclusiones obtenidas durante el trabajo de tesis y las lineas

de trabajo futuro.

8.2 Planteamiento

La conocida como Inteligencia de Enjambres aparece bajo diversas formas tanto
en la cultura popular (libros, peliculas y videojuegos) como en entornos de
investigacion y desarrollo. El concepto, surgido a partir del comportamiento
de animales eusociales como las termitas y las hormigas, propone formas de
inteligencia colectiva emergente a partir de la interactuacion entre entidades
relativamente simples. Como grupo, consiguen abordar y resolver problemas a
los que, como individuos, dificilmente encontrarian solucién. La sinergia es el
concepto que resume este tipo de actividades, que pueden ser explicadas como

”El todo es mayor que la suma de sus partes”.

A pesar de que las soluciones numéricas basadas en Inteligencia de
Enjambres fueron propuestas hace més de dos décadas, es ahora cuando empiezan
a ser aplicadas en campos diversos. Puesto que los individuos que forman un
enjambre realizan su actividad de manera independiente, los enjambres artificiales
son altamente paralelizables, lo cual resulta muy adecuado para ser implementado
en los actuales ordenadores multinticleo. Resulta igualmente atractiva la relativa
simplicidad de cada miembro de un enjambre, ya que su disefio puede resultar

mas abordable que el de otras metodologias monoliticas y complejas.

El uso de estas técnicas en vision por ordenador parece limitado a su
aplicacion en problemas de optimizacién, con algunas excepciones puntuales.
Dado que este campo estd abierto a la experimentacion, gracias en parte a la
inexistencia de un modelo Unico de vision artificial, la adopciéon de técnicas

basadas en enjambres puede dar lugar a soluciones originales a problemas

159

Inteligencia de Enjambres en Vision por Ordenador

conocidos.

Este trabajo aborda el problema del seguimiento de objetos en secuencias de
video desde la perspectiva ofrecida por la Inteligencia de Enjambres. Siguiendo
como mdaxima la simplicidad de cada individuo y su independencia frente al
resto de componentes del grupo, independencia relativa al procesamiento de la
informacion pero no a su actividad ’social’, se proponen dos soluciones basadas
en enjambres. Se mostrard como el comportamiento que emerge de la interaccién

entre individuos va mds alld de las capacidades individuales.

160

8.3 Metodologia

8.3.1 Seguimiento de Objetos

El seguimiento de objetos consiste en la localizacion continua y auténoma de
entidades visuales segiin evolucionan en una secuencia de video, lo cual es un
problema fundamental en la Visién por Ordenador. Si bien el seguimiento en
entornos controlados o conocidos puede ser considerado un problema resuelto,
una solucion general de seguimiento todavia continda siendo una tarea desafiante.
El seguimiento de objetos es por lo tanto un tema ampliamente investigado en la

actualidad.

El seguimiento es principalmente una actividad de bajo nivel: los objetos
pueden ser seguidos sin importar su categoria. L.os bebés son capaces de seguir
objetos incluso antes de aprender qué son o para qué sirven, utilizando para ello
pistas de bajo nivel como el color, la textura y el movimiento. Una vez un objeto
es reconocido, la accion de seguimiento puede aprovechar informacién disponible
como el tipo de movimiento que puede realizar el objeto o los distintos aspectos

que puede presentar segun el punto de vista.

En este trabajo se despreciard la carga seméntica de los objetos. Al resultar
una actividad visual instintiva resulta especialmente interesante replicarla para
poder ser utilizada en cualquier contexto, sin necesidad de recabar informacién
previa del objeto a seguir. No se considerardn clases conocidas y por lo tanto
no podrd utilizarse informacién conocida de antemano, adoptando un enfoque

precategorico. Diversas técnicas permiten localizar objetos de interés en imagenes

161

Inteligencia de Enjambres en Vision por Ordenador

sin conocer nada sobre ellos. Consisten principalmente en la deteccion de puntos o
regiones que, por sus caracteristicas, son claros candidatos a contener informacién
relevante sobre la imagen. Estas técnicas incluyen la deteccién de puntos y
regiones de interés, el andlisis de la saliencia visual, la substracciéon de fondos
una vez modelados y la segmentacién de regiones a partir de caracteristicas de

bajo nivel, entre otras.

Asi pues, para permitir que un ordenador pueda tratar de seguir objetos
visuales en las secuencias de video obtenidas a través de dispositivos de entrada
de imdgenes (sean reproducciones de videos o cdmaras que alimenten al sistema
de un flujo de imagenes en tiempo real) es necesario definir qué es un objeto en

una imagen.

No existe una tnica definicion de qué es un objeto en el espacio proximal
(esto es, el espacio en el que guarda una proyeccion del mundo real, o espacio
distal, creada por un sensor visual). Si acaso, podria ser “cualquier cosa que
resulte de interés para la tarea a realizar”. Se utilizaran diferentes representaciones
dependiendo en gran medida del grado de rigidez del objeto de interés y de si éste
se define como un tnico elemento o como la suma de multiples partes. Si bien los
objetos rigidos requieren descripciones simples, la mayor parte de los objetos en

el mundo real muestran movimiento no rigido.

El movimiento no rigido es clasificado generalmente en tres grupos: el
movimiento de partes rigidas, en el que las partes de un objeto se mueven
independientemente unas de otras (categorizado como movimientos articulados),
el movimiento coherente y movimiento fluido. En las simulaciones por ordenador,

el movimiento coherente suele ser estimado a través de cuerpos rigidos articulados

162

discretos compuestos por multiples partes de tamafio infinitesimal.

El saber cémo evoluciona un objeto en una secuencia de video, si éste es
rigido o eléstico, dictamina como puede ser descrito. La representacion mads
simple de un objeto visual en un espacio bidimensional es un tGnico punto, que
puede coincidir con el centroide del objeto. Formas geométricas simples (como
rectangulos o elipses) pueden ser usadas para definir regiones de la imagen
alrededor de puntos especificos, que pueden abarcar todo el objeto o representar
partes distintivas a diferentes escalas. Pueden considerarse transformaciones
afines para adaptar estas formas a rotaciones, cizalla, traslaciones o escalados.
Una coleccidn de puntos y/o regiones puede ser combinada para definir objetos
compuestos. Para tratar con objetos deformables, muchos trabajos consideran sus
siluetas, contornos y esqueletos dada su versatilidad para describir formas. La

Figura 8.1 muestra algunos ejemplos de estas representaciones.

Una vez establecido el tipo de movimiento que sufre el cuerpo a analizar
y como serd definido, el objeto se describe por su apariencia, utilizando
caracteristicas extraidas de las imdgenes como la informacién cromdtica en
distintos espacios de color, las magnitudes y orientaciones del gradiente,
descriptores de textura o movimiento; y por su relacion con otros objetos, creando
estructuras complejas. La definicién del objeto dictamina qué técnicas seran

usadas para trabajar con €l.

163

Inteligencia de Enjambres en Vision por Ordenador

Figure 8.1: Representacién de objetos bidimensionales en el espacio proximal.

8.3.2 Enjambres Artificiales

La habilidad de las criaturas que forman enjambres para lograr realizar tareas
complejas sin importar la simplicidad de cada individuo ha inspirado numerosas
soluciones numéricas basadas en enjambres en campos muy diversos. La
Inteligencia de Enjambres, expresion introducida en 1989 en el contexto de los
sistemas celulares robéticos, es considerada un tipo de inteligencia basada en el
comportamiento colectivo de sistemas descentralizados y auto-organizados. La

Inteligencia de Enjambres puede ser representada por el concepto de Sinergia,

164

entendida como la interacciéon o cooperacién de dos o mds organizaciones,
substancias u otros agentes para producir un efecto combinado mayor que la suma

de los efectos por separado”.

Sin embargo, antes de que la habilidad de las colonias de insectos para
resolver problemas de optimizacion fuera modelada y aplicada a problemas
numeéricos, diversos modelos ya mostraban habilidades de auto-organizacion,

evolucioén y comportamientos emergentes.

A finales de 1940 el propio John von Neumann postul6 la posibilidad de
crear vida artificial utilizando ordenadores y desde entonces numerosos sistemas
imitan de una forma u otra, a distintos niveles, comportamientos similares
a los mostrados por criaturas y ecosistemas bioldgicos. La Vida Artificial,
como se denomina este campo de estudio, trata de recrear en los ordenadores
sistemas organicos que abarcan desde complejos ecosistemas donde interactian
diversos organismos a la simulacion de la genética de criaturas digitales. Uno
de sus objetivos es lograr sistemas que, al menos en apariencia, muestren

comportamientos similares a los modelos biolégicos en los que se inspiran.

Basandose en las propuestas de John von Neumann sobre la Vida Artificial,
John Conway cre6 uno de los primeros automatas celulares en el que la interacciéon
entre entidades simples seguin unas reglas de comportamiento muy sencillas daba

lugar a estructuras complejas y difiles de predecir (ver Figura 8.2).

165

Inteligencia de Enjambres en Vision por Ordenador

Figure 8.2: El Juego de la Vida, de Conway.

Boids

No siempre es necesario construir complejos sistemas para lograr imitar
comportamientos realistas. En 1986, Craig Reynolds propuso un modelo
computacional de movimiento coordinado en grupo independiente del sistema de
locomocién de los individuos. Llamoé a sus criaturas Boids, y sus habilidades
basicas de agrupamiento estaban definidas por tres simples reglas denominadas
Cohesion, Alineamiento y Separacion. Estas reglas basicas fueron posteriormente
apoyadas por experimentos en peces reales. Gracias a ellas, cada boid era capaz
de maniobrar segtn las posiciones y velocidades de sus compafieros de grupo, asi

como de reaccionar a obstaculos del entorno.

En el modelo de Boids, las reglas de movimiento se definen mediante
vectores (ver Figura 8.3). La regla de cohesion define un vector de un boid hacia el
centroide de los compaiieros cercanos de bandada, lo que mantiene al grupo unido.
La regla de Alineamiento define un vector que es el promedio de las velocidades

de los compaiieros cercanos, lo que permite al grupo moverse en una direccion

166

//f. l\\\\ tf(l \‘\\ /(,l .\\\
d Vg \ i h , ’ \
:: II'. I:. I.'. I:. .I'.

(a) (b) ()
Figure 8.3: Los Boids de Reynolds siguen tres comportamientos direccionales bésicos, lo
que les permite realizar movimientos en grupo muy realistas.
comin. La regla de separacion es simplemente un vector desde el centroide de
compafieros muy cercanos hacia el boid considerado, lo que evita choques entre

miembros del grupo.

Para conseguir el movimiento coordinado del grupo, cada boid no tiene més
que calcular y sumar estos tres vectores (y cualquier otro que quiera afadirse
como regla de movimiento, como la habilidad para esquivar obstaculos) y utilizar

la resultante como velocidad de movimiento.

Los boids de Reynolds son tremendamente versétiles: pululan en su entorno
virtual y se muestran como un enjambre, una bandada, un banco de peces o un
rebafio dependiendo de los pesos asignados a las reglas de movimiento. Por
ejemplo, asignar un peso bajo a la regla de alineamiento permite que cada boid
siga su propia velocidad, dando el grupo el aspecto de un enjambre. Asignar un
peso mayor a esta misma regla hace que los boids traten de imitar las velocidades
de sus vecinos, por lo que el grupo se comporta como una bandada de pdjaros.
Su uso estd ampliamente extendido en los medios visuales (cine y videojuegos)

cuando se requieren dindmicas de grupo coordinado.

167

Inteligencia de Enjambres en Vision por Ordenador

Ragdolls

En algunas ocasiones se requiere emular sistemas articulados complejos, como la
estructura de un virus o las propiedades de plegado de una proteina, para lo cual
se utiliza la dindmica de particulas sujetas a restricciones. La simulacién de la
dindmica de particulas sujetas a restricciones esta estrechamente relacionada con
la industria del videojuego, donde muchas veces se requiere simular la fisica de
cuerpos rigidos. Thomas Jakobsen establecio, con el sistema creado para Hitman:
Codename 47, de 10 Interactive, el nicleo de un motor de fisica para videojuegos

centrado en la estabilidad y velocidad de ejecucion (ver Figura 8.4).

La versatilidad de estos sistemas ha permitido su aplicacién en muy diversos
contextos. Tan s6lo en el campo del videojuego encontramos ejemplos diversos:
muchos elementos en Hitman: Codename 47, de 10 Interactive, desde la corbata
del personaje principal a los cadaveres de sus victimas, utilizan el sistema de fisica
Ragdoll adoptado en el presente trabajo (ver Figura 8.4a). Fue desarrollado por
Jakobsen especificamente para el juego. En Bungee Manager (prototipo creado
por el autor de este trabajo), las cuerdas de puenting son simuladas mediante
Ragdolls (ver Figura 8.4b). En World of Goo, de 2DBoy, el usuario puede crear
complejas estructuras colocando criaturas capaces de ligarse entre si, luchando
contra la gravedad para alcanzar diversos objetivos. Es un claro ejemplo de puzzle
basado en la fisica que requiere de un motor fiable para su ejecucién (ver Figura

8.4¢).

Definiendo un cuerpo articulado como un conjunto de particulas y

enlaces en una estructura similar a un grafo, Jakobsen propuso un método

168

P et e

(@) a (b) b

Figure 8.4: Ragdolls en videojuegos

sorprendentemente simple para simular la dindmica de cuerpos articulados
complejos basandose en un esquema de integracion Verlet, solucionando las
restricciones de forma iterativa. Este método, conocido como ’muilecos de
trapo’ (ragdolls), es capaz de manejar la simulacion de cientos de cuerpos rigidos
interactuando en tiempo real, desde ropa y pelo a plantas y cuerpos humanos, por
lo que numerosos motores de fisica para dos y tres dimensiones ya incorporan

soluciones semejantes.

Los ragdolls pueden ser considerados, en el contexto del presente trabajo,
como enjambres cuyas particulas estan sujetas a restricciones estructurales. A
diferencia de un modelo de Boids, en el que las particulas se mueven libremente,
en los modelos Ragdoll las particulas siempre guardan la misma posicion relativa
dentro de la estructura. Por lo tanto, son sistemas capaces de recordar y mantener
una forma concreta, como pueda ser un esqueleto humano o la forma de una mano,

y recuperarla tras sufrir deformaciones.

169

Inteligencia de Enjambres en Vision por Ordenador

8.3.3 Computacion bioinspirada

La computacion bioinspirada se apoya en los campos de la biologia, la informética
y las matemadticas, y estd intimamente relacionada con la inteligencia artificial
(IA), abarcando el conexionismo, los comportamientos sociales y la emergencia.
A diferencia de la TA clésica, donde los problemas son resueltos desde la
perspectiva del programador, quien depende de sus conocimientos y habilidades
para disefiar algoritmos adecuados, la computacion bioinspirada aplica soluciones
que pueden encontrarse en la naturaleza a problemas similares al tratado

utilizando el principio de analogia.

Computacion evolutiva

La propia evolucion como sistema es capaz de encontrar soluciones Optimas
adaptadas y especificas. Un importante campo de la computacién bioinspirada
lo constituye la computacién evolutiva, en la que la programacion y algoritmos
genéticos utilizan los mismos principios que la evolucion para buscar soluciones
a problemas concretos: la seleccion, la reproduccién y la mutacién. En la Figura
8.5 se muestra una de las criaturas digitales creadas por Karl Sims mediante
evolucién. En el entorno propuesto por Sims, las criaturas deben evolucionar
con el unico objetivo de avanzar todo lo posible. Los distintos actuadores de
sus cuerpos crean mecanismos de locomocién que, tras sucesivas generaciones de
criaturas de las que solo las mejores sobreviven, se adaptan para optimizar el tipo

movimiento en el medio en el que viven.

170

Figure 8.5: Criatura digital surgida de la adaptacién al medio virtual en el que existe.

Optimizacion por colonia de hormigas

En el caso de la Inteligencia de Enjambres, nos encontramos con que es
precisamente optimizar lo que los animales eusociales realizan contante y
eficientemente: desde la asignacion de tareas a encontrar el camino minimo
entre dos puntos, los insectos se basan en sus enormes poblaciones y control
descentralizado para encontrar soluciones 6ptimas. La Optimizacién por Colonia
de Hormigas fue propuesta por Marco Dorigo en 1992, y todavia hoy se estudia
y mejora constantemente. Puede ser considerada una de las primeras aplicaciones

de la Inteligencia de Enjambres a la resolucion de problemas.

En su trabajo, Dorigo creaba hormigas virtuales capaces de recorrer
grafos, impregnandolos de feromonas en el proceso, proponiendo una técnica
probabilistica de resolucién de problemas que se reducia a la busqueda de
caminos minimos en estos grafos. En la actualidad, el uso del intercambio
de informacion entre agentes utilizando el entorno (una forma de sinergia

denominada estigmergia) es suficiente para que un algoritmo pertenezca a la clase

171

Inteligencia de Enjambres en Vision por Ordenador

de los algoritmos de colonias de hormigas.

Optimizacion por enjambres de particulas

En 1995 James Kennedy y Russell C. Eberhart propusieron otro algoritmo
estocédstico basado en poblaciones para la resoluciéon de problemas: la
optimizacion por enjambres de particulas (PSO). Este algoritmo se inspiraba en el
comportamiento social en grupo de animales, asi como en el trabajo de Heppner
y el ya mencionado Reynolds (Boids). PSO fue disefiado explicitamente para
encontrar soluciones a problemas de optimizacion utilizando principios psico-

sociales.

Estos enjambres se modelan como un grupo de particulas con una posicion,
que representa una solucién vélida al problema, una velocidad y cierta memoria.
La dindmica social permite que cada individuo recorra el espacio de soluciones
comunicando sus resultados al resto del enjambre, y gracias a esta colaboracion el
grupo termina por encontrar una solucion adecuada (aunque nada impide el que
el optimo encontrado sea local o que la solucion optima no sea encontrada, como

ocurre con otras heuristicas).

La Figura 8.6 muestra la evoluciéon de un enjambre en un entorno
tridimensional en el que los individuos buscan el punto més alto. Un enjambre de
doce particulas creadas aleatoriamente trata de encontrar el punto méximo de un
paisaje tridimensional. Las lineas verdes muestran el movimiento actual, mientras
que las amarillas muestran el movimiento en la iteracion anterior. Notese que,

aunque este enjambre es capaz de superar los maximos locales, esta habilidad

172

depende de la implementacién utilizada. Aun asi, los sistemas PSO son muy

versdtiles y su adaptacidn a cada problema es relativamente sencilla.

Ay fy 4y Ay
iy <y dy Ay

Figure 8.6: Particle Swarm Visualization

Comparados con los algoritmos genéticos y los sistemas de optimizacién
por colonias de hormigas, los sistemas basados en la optimizacion por enjambres
de particulas son mucho mas sencillos de disefiar e implementar, lo que ha
permitido que sigan siendo un campo de investigacion muy activo. Aunque su
primera aplicacion practica fue en el campo de las redes neuronales, PSO se utiliza
actualmente en aplicaciones muy diversas, incluyendo las telecomunicaciones, la

mineria de datos, el disefio, el procesamiento de sefiales, entre otras.

Project Computing, 2004. http://www.projectcomputing.com/resources/psovis/index.html

173

Inteligencia de Enjambres en Vision por Ordenador

8.4 Aportaciones Originales

Se resumen a continuacion las dos propuestas originales contenidas en el presente

trabajo:

8.4.1 Modelo de enjambre de particulas libres: Boids

La primera aportacion original de este trabajo consiste en una solucion basada en
la Inteligencia de Enjambres en la que el problema del seguimiento de objetos
en Vision por Ordenador se modela como una metafora depredador-presa en
el ecosistema creado por una secuencia de video. Inspirado por la actividad
individual de los insectos sociales y los modelos de comportamiento distribuido,
el seguimiento es entendido como una propiedad emergente de un enjambre de
particulas depredadoras cuando €stas persiguen a sus pixeles-presa a través de los

cuadros de la secuencia analizada.

Las particulas depredadoras buscan a sus presas guiadas por su aroma,
entendido como una combinacién de caracteristicas de la imagen que cada
particula guarda como objetivo. El sistema no requiere ni una plantilla visual
completa del objetivo a seguir ni un modelo de su dindmica. Siguiendo las
mismas reglas de dindmica coordinada de grupo planteadas por Reynolds para sus
Boids, las particulas vuelan en el espacio bidimensional creado por las imagenes

digitales.

174

Comportamientos direccionales

Las siguientes expresiones definen como un Boid se mueve en un sistema con n

reglas:

Up(t) = wo-vp(t—1)+ (8.1)
wi - (ruley) +
ws - (rules) +

ws - (rules) +

wy - (ruley,)

T,(t) = z,(t — 1)+ v,(1). (8.2)
donde:

e v,(t), v,(t — 1) son la velocidad del boid en la iteracién actual y previa.
e 1,(t), x,(t — 1) son la posicién del boid en la iteracién actual y previa.

e ruley..rule, son comportamientos direccionales, vectores calculados
para satisfacer ciertas condiciones: cohesion, separacion, alineamiento,

seguimiento de un lider, movimiento aleatorio...

e w;..w, son los pesos que controlan la influencia de cada regla.

A las reglas que definen los vectores de cohesion, alineamiento y separacion

de los Boids clésicos se afiade una cuarta, la caza, que guia a cada particula

175

Inteligencia de Enjambres en Vision por Ordenador

hacia las regiones cercanas en las que las presas sean mds parecidas a los

gustos de cada depredador (ver Figura 8.7). Formalmente, dado un enjambre

de particulas S que habita una secuencia de video de la cual se extraen un

conjunto de mapas de caracteristicas de imagen F,cada particula p es una 4-tupla:

D =< Tp, Up, Cp, sfp > p € S donde:

1. @, : Posicién en el espacio de la imagen en el instante actual de la particula

176

.
Up,: Velocidad de la particula.

cp: Confort de la particula, una medida de la calidad del seguimiento en
el instante de tiempo actual, obtenida de la mejor presa en la vecindad de
la particula. Tendrd un valor entre 0.0 (peor) y 1.0 (mejor), y su célculo

depende del método de seguimiento empleado.

-

sl,: Lista de los aromas registrados por la particula como caracteristica de
la presa a perseguir, obtenidos de F (intensidad, color, gradiente, textura,

movimiento...)

La Figura 8.7 muestra como una particula (representada como un punto
rojo) analiza su vecindad buscando presas que satisfagan sus gustos. El
tamafio de las flechas en la imagen de la derecha representa el interés que
cada region alrededor de la particula despierta en ésta. La resultante de la
regla de caza, representada como una flecha verde, apunta a la regiéon que

contiene el mayor numero de presas interesantes.

Predator’s taste

10x10 Swarm

Image frame Predator’s 1st rule’s vector
neighbourhood

Figure 8.7: Regla 1: Caza.

Seguimiento

El modelo adoptado permite que cada particula implemente su propio
sistema de seguimiento, al contrario que en PSO donde todas las particulas
deben ser homogéneas. Asi, es posible la creacién de enjambres cuya
atenciéon puede abarcar una amplia variedad de caracteristicas de la imagen y
distintos comportamientos dentro del mismo enjambre. Se consideran varias
combinaciones de caracteristicas de la imagen como aromas para las presas: color,
intensidad del gradiente, bordes, puntos de interés, cantidad de movimiento y

texturas.

Gracias a la independencia del proceso de caza (seguimiento), esta funcién
es altamente paralelizable, lo que permite la creacion de enjambres densos en

equipos multintcleo.

177

Inteligencia de Enjambres en Vision por Ordenador

En la implementacién del modelo se adopté un esquema de busqueda local
en ventanas. La regla de caza de cada particula busca en una vecindad cercana la

zona que contenga las presas mds atractivas.
§ (Zq — Tp) - Bap
q
§ : qu
q

VP = Vge N (8.3)

donde

e 7, es la posicién de una presa ¢

e 3, representa el interés que la presa ¢ despierta en el depredador p, esto
es, la semejanza ente la lista de caracteristicas a seguir por la particula p,
s7p y las caracteristicas de un pixel concreto. Su cdlculo dependerd de las

funciones de distancia definidas entre las caracteristicas usadas.

Puesto que los comportamientos direccionales no imponen restricciones
estructurales, los miembros del grupo tienen total libertad para seguir a sus
presas (siempre dentro de los pardmetros del comportamiento social). El sistema
propuesto es por lo tanto capaz de seguir objetos altamente deformables en
secuencias de caracteriticas muy variadas, moviéndose sobre el objeto imitando

la dindmica de un enjambre de insectos voladores.

Red de deteccion de caracteristicas

En el cuadro inicial de una secuencia de video el enjambre es colocado sobre el

grupo de pixeles presas a ser seguido. Cada particula extrae y guarda un conjunto

178

de caracteristicas de la region en la que es creado. Estas caracteristicas de la presa
son calculadas utilizando una Red de Deteccion de Caracteristicas compuesta por
una variedad de Detectores de Caracteristicas F'D; que extraen y combinan rasgos
de la imagen para crear una serie de mapas de caracteristicas F = f1, fo.. fm delos
cuales el enjambre extrae informacion de sus presas (ver Figura 8.8). Sin pérdida

de generalidad, estos mapas son normalizados al rango 0..1.

Feature detection netmwark Perceived features

Images Swarm
1 oo
FL1 o OQG
o o a o
o G'D
13
| Fbz L]
4
Calr
FD3 - F ={fl, {2, {2, 14,13, ... fm}
fin
FCn

Figure 8.8: Las particulas del enjambre extraen informaciéon de los mapas de
caracteristicas, calculados a partir de las imdgenes o creados por las propias particulas.

Estos rasgos caracterizan el aroma de una presa, que es una abstraccion
de la combinacién de caracteristicas transformadas que la particula perseguira.
El valor de intensidad de un pixel podria ser considerado el aroma mas simple,
pero muchos otros rasgos pueden ser utilizados (ver Figura 8.9). Los aromas de
las presas pueden ser ademds modulados, modificando sus intensidades mediante
el uso de otros rasgos: magnitudes del gradiente, movimiento, puntos salientes
o mapas de feromonas creados por las propias particulas. Asi, los miembros
del enjambre persiguen presas que despiden un cierto aroma, que se vuelve mas

atractivo al cumplir ciertas condiciones (por ejemplo, la presa se sitia en una

179

Inteligencia de Enjambres en Vision por Ordenador

region donde se ha detectado movimiento o donde los depoésitos de feromonas

tienen un nivel de concentracién mayor).

(b) (© (d)

Figure 8.9: Aromas utilizados por las particulas de seguimiento: a) color RGB, b)
gradientes Sobel, c¢) cruces por cero de la Laplaciana normalizados, d) cédigos LBP
simplificados.

Pesado de las reglas

Se consideran dos conjuntos de pesos para las reglas, obtenidos empiricamente:

e wi(Caza) =1.0

e wy(Cohesion) = 0.3

o ws(Alineamiento) = 0.5
o wy(Separacion) = 0.01
e wy(Inercia) =0.1

e n(Tamano de la vecindad (pizeles)) = 11

Aunque los pesos propuestos funcionan adecuadamente en la mayor parte de
las situaciones encontradas, puede argumentarse que establecer estos valores

manualmente es una solucion ad hoc. En lugar de tratar de encontrar el conjunto

180

optimo de pesos para cada situacidon, se adopta un enfoque completamente
estocdstico. Cada particula, en cada instante de tiempo, cambiard los pesos de

sus reglas continuamente.

El uso de valores aleatorios procedentes de ruido blanco provocaria
comportamientos erraticos en las particulas, lo que a su vez repercutiria en la
calidad del seguimiento al no dar tiempo al enjambre a adaptarse. En su lugar, las
particulas obtienen los nuevos pesos a partir de los valores interpolados entre dos
puntos aleatorios, creando una funcién de ruido suave mediante una onda definida
por partes de frecuencia y amplitud aleatoria. En la fila superior de la Figura 8.10
se muestra una sefial de ruido blanco, demasiado dura para parecer natural en este
contexto. En la fila inferior de la misma figura se muestra una sefial aleatoria
cuyos valores se obtienen de la interpolacién por coseno entre puntos aleatorios

(marcados con circulos azules) definidos a lo largo de la dimension de la funcién.

Figure 8.10: Ruido blanco y Onda de ruido.

Al considerar el uso de pesos aleatorios con este tipo de evolucion para
ponderar las reglas de movimiento se logra que las particulas experimenten
cambios de tendencia en su comportamiento durante el seguimiento de manera
suave (por ejemplo, ciertas particulas pueden ’decidir’ alejarse del grupo
momentidneamente, volviendo a agruparse momentos después). La Figura 8.11

muestra varios instantes de una secuencia en la que un enjambre persigue un

181

Inteligencia de Enjambres en Vision por Ordenador

objeto de movimiento ripido.

Figure 8.11: Enjambre de particulas siguiendo a un objeto en una secuencia de video.

182

Diferencias con la optimizacion por enjambres de particulas (PSO)

La presente solucion difiere de los modelos PSO, aunque ambos métodos
comparten las mismas raices: el comportamiento social de grupos y los trabajos de
Reynolds y Heppner. Sin embargo, mientras que PSO realiza busquedas globales
en el espacio de soluciones, el seguimiento basado en boids realiza busquedas

locales.

Las particulas en PSO representan soluciones que evolucionan en el espacio
de soluciones, mientras que las particulas boid vuelan en el espacio bidimensional
creado por imagenes digitales. Esta caracteristica permite que las particulas
boid persigan metas heterogéneas. Los comportamientos direccionales siguen
aplicandose, asi que aunque cada particula tenga una meta diferente, siguen
perteneciendo al mismo enjambre. Las particulas de PSO que pertenecen a
un mismo enjambre deben ser homogéneas por definicion, ya que su posiciéon

representa una solucion al problema.

Las soluciones PSO requieren un cierto nuimero de interacciones antes de
encontrar una solucién dnica. Por lo tanto, al ser aplicadas a secuencias de video,
las soluciones PSO deben completar las iteraciones antes de avanzar al siguiente
cuadro. M4s aun, aunque varias soluciones proponen adaptar PSO a entornos
dindmicos, las particulas suelen ser forzadas a olvidar sus posiciones (soluciones)
anteriores. El seguimiento basado en boids funciona de manera continua, con

particulas que adaptan su posicioén de cuadro a cuadro.

El seguimiento emerge del estado de todas las particulas, localizando el

objeto en el centroide del enjambre y estimando su velocidad de la velocidad

183

Inteligencia de Enjambres en Vision por Ordenador

promedio ponderada de las particulas del enjambre. PSO confia en la bondad

de una unica particula, la solucion 6ptima, que puede no ser la mejor solucion.

Ambas soluciones difieren completamente en este aspecto: mientras que

las particulas boids evolucionan independientemente, optimizando su confort

individual, las particulas PSO deben converger a un tnico punto.

Otras consideraciones

Otros procesos pueden ser introducidos en el esquema de Boids propuesto. Entre

ellos podrian considerarse los siguientes:

184

e Filtrado de imédgenes: Puesto que las secuencias utilizadas fueron obtenidas

con camaras de poca calidad, o descargadas de servicios online en Internet,
muchas mostraban ruido perceptible y artefactos debidos a la compresion.
Se barajaron tres filtros distintos: un fuerte filtrado gaussiano, un filtro
pequefio de mediana y un filtro bilateral con amplio rango de frecuencias.
De los tres, el ultimo parece el mas adecuado de manera general, ya que
consigue suavizar gran parte del ruido a la vez que preserva los bordes

originales de la imagen.

En la Figura 8.12 se muestra el efecto de tres tipos de filtros. La imagen
de la izquierda (a) es filtrada utilizando un filtro gaussiano de apertura 11
(b), un filtro de mediana de apertura 5 (c) y un filtro Bilateral de apertura 5,
rango 64 y frecuencia 3 (c). El filtro bilateral es preferible ya que conserva

los bordes originales de la imagen.

e Ventanas de busqueda ponderadas y medida de cansancio de las particulas:

t?l ;A ;4 t-,?l

Figure 8.12: Filtrado de ruido.

Con el fin de evitar que las particulas experimenten saltos bruscos durante
el seguimiento, dado que se presupone que el objeto seguido cumple el
principio de continuidad, las ventanas de buisqueda podrian ser ponderadas
para que los saltos largos sean mas costosos que los cortos. De igual forma,
las particulas podrian experimentar cansancio, sufriéndolo al realizar saltos

largos.

e Mapas de feromonas: una caracteristica interesante podria consistir en
un mapa de feromonas similar al creado en los enfoques ACO. Durante
el seguimiento, cada boid podria depositar en la trayectoria seguida una
cantidad de feromonas proporcional a la medida de calidad del seguimiento
(el confort de la particula). Depdsitos consecutivos incrementardan la
acumulacién de feromonas en esa zona, aunque con el tiempo acabara por
evaporarse. Asi, las particulas podrian incorporar una nueva regla para
sentirse atraidas hacia las regiones con altas concentraciones de feromonas,

manteniendo al grupo cohesionado (ver Figura 8.13).

e Busquedas aleatorias: para permitir al enjambre la exploracién de areas

mas amplias en caso de perder su objetivo, pueden introducirse busquedas

185

Inteligencia de Enjambres en Vision por Ordenador

™~

% -

(a) (b) (© (d)
Figure 8.13: Mapas de feromonas en una misma secuencia en distintos instantes de
tiempo. Los valores estan invertidos por motivos de visualizacién, por lo que los puntos
oscuros representan niveles mayores de concentracién de feromonas.
aleatorias como un nuevo comportamiento direccional. Un vector de
movimiento aleatorio puede ser afiadido a las reglas de comportamiento,
con una magnitud inversamente proporcional al valor de confort de una
particula. De esta forma, las particulas que pierdan su objetivo podran saltar
a lugares lejanos para continuar con su busqueda, en lugar de permanecer

atrapadas en algiin minimo local.

Comportamiento seguidor

El comportamiento depredador y las interacciones cooperativas sociales llevan
a las particulas hacia aquellas dreas de la imagen que son similares al lugar
donde el enjambre fue creado, emergiendo un comportamiento de seguimiento
para objetos rigidos y no rigidos donde el centroide del enjambre y su velocidad
describen la trayectoria del objeto y su velocidad. El seguimiento es alcanzado
mediante la optimizacién del confort individual: el enjambre resuelve el problema
de optimizacion espacial mediante un algoritmo voraz, maximizando el confort de
cada particula y asi minimizando la distancia entre el centroide del enjambre y el

objeto seguido.

186

b) ...pero muchas particulas son capaces de permanecer sobre el objeto.

¢) Los comportamientos direccionales mantienen a las particulas sobre el objeto perseguido.

Figure 8.14: Los comportamientos direccionales pueden corregir a las particulas perdidas
durante el seguimiento.

Una sola particula no seria capaz de seguir al objeto durante mucho tiempo.
Seria facilmente atraida hacia pixeles en el fondo cuyas caracteristicas fuesen
similares a las perseguidas por la particula (ver Figura 8.14 a). Sin embargo, al
observar varios docenas de particulas independientes tratando de perseguir a sus
presas, resulta aparente que muchas de ellas si son capaces de permanecer sobre
el objeto durante periodos de tiempo mads largos (ver Figura 8.14 b). Gracias a los
comportamientos direccionales, estas tiltimas son capaces de guiar a las particulas

perdidas en la direccion correcta.

El enjambre es capaz de seguir a su objetivo en una gran variedad de
condiciones de iluminacién y fondos distinta. Debido a la ausencia de rigidez
estructural en el patrén perseguido, los objetos pueden ser deformables y
escalables. La Figura 8.15 muestra algunas secuencias donde el enjambre persigue

sin problemas a sus objetivos.

187

Inteligencia de Enjambres en Vision por Ordenador

—

.

Figure 8.15: Objetos seguidos con éxito, marcados en un recuadro blanco.

Es importante sefialar que, debido a la ausencia de restricciones
estructurales, el enjambre flota libremente sobre los objetos perseguidos. Si un
objeto tiene caracteristicas homogéneas y es suficientemente grande, el centroide
del enjambre vagabundeara por su interior. En el ejemplo de seguimiento
de la linea de carretera en la Figura 8.15 el movimiento debe ser restringido

verticalmente.

Dado que las particulas de los actuales enjambres no son capaces de
actualizar los descriptores de las presas perseguidas, el objeto seguido puede ser
perdido si su apariencia sufre cambios crométicos drésticos (ver Figura 8.16(a,b)).
Ademas, si en la vecindad del enjambre del objeto seguido existieran objetos de
apariencia similar (como ocurre con los patos de la Figura 8.16 c), el enjambre
podria facilmente saltar de un objeto a otro, ya que no considera informacién

contextual.

188

Figure 8.16: Problemas en el segumiento.

8.4.2 Modelo de enjambre de particulas sujetas a restricciones:

Ragdolls

La segunda aportacion original de este trabajo consiste en una estructura de
cuerpos articulados eldstica aplicada al seguimiento en tiempo real de objetos
en secuencias de video. Esta estructura puede entenderse como un enjambre
cuyos miembros estdn sujetos a restricciones de distancia entre pares, esto es,

un conjunto de particulas y enlaces.

Cada particula realiza independientemente el seguimiento de un patrén en
una secuencia de video, pero forma parte de la estructura creada por el conjunto
de particulas y restricciones. La estructura elastica resultante es similar a un grafo
y a lo que se conoce como Ragdolls en la industria del videojuego. Los sistemas

Ragdoll suelen constar de las siguientes etapas:

e Acumulacion de fuerzas: la aceleracion de cada particula es actualizada por

todas las fuerzas (gravedad, viento...), si existiesen.

e Cinematica: cada particula actualiza su velocidad y posicion usando el

esquema Verlet.

189

Inteligencia de Enjambres en Vision por Ordenador

e Restricciones externas: cada particula sufre una proyeccién como resultado
de la existencia de restricciones externas, si existiesen (por ejemplo, limites

del mundo simulado, interaccién del usuario, colisiones con otros objetos...)

e Resolucidén de restricciones: las restricciones internas (enlaces entre

particulas) son satisfechas mediante relajacion.

Se explican a continuacion las distintas etapas en el orden adecuado para la mejor

comprension de esta solucion.

Dinamica de particulas

Para lograr la simulacion correcta del sistema de particulas que forma los cuerpos
rigidos articulados se utiliza el motor propuesto por Jakobsen. En el sistema
original, cada particula debia responder ante restricciones externas (fuerzas y
proyecciones) mientras trataba de no violar las restricciones internas (enlaces
entre particulas). Para ello, Jakobsen propuso un sistema Verlet sin velocidad,
esto es, calculando la velocidad de cada particula a partir de su posicion actual y
la inmediatamente anterior:

T =21y — 5 +a, A (8.4)

donde x7, es la nueva posicion de la particula p, z;, es su posicion actual y z; es su

posicion en el instante anterior.

190

Satisfaccion de restricciones

Al contrario que los sistemas que utilizan las ecuaciones eulerianas de
movimiento, el no usar explicitamente la velocidad otorga numerosas ventajas,
ya que las particulas no acumulan errores de velocidad y pueden ser proyectadas
en cualquier momento a cualquier posicion. De esta manera, las restricciones
internas pueden ser satisfechas precisamente proyectando las particulas a las
posiciones adecuadas de manera iterativa. Considerando que cada particula tiene
su propia masa, en cada iteracion se aplican las siguientes expresiones para

satisfacer una restriccion de distancia d entre dos particulas p y ¢:

§ = &,—7%,
0] - d
€ = =
LO+ 6] - (myt +mt)
a, = Ftde
Ty = Thgtd-e (8.5)

La Figura 8.17 muestra como las restricciones locales son satisfechas
consecutivamente en un proceso iterativo. Una restriccion de distancia c se define
entre dos particulas p y ¢ (Figura 8.17 a). Si un enlace entre dos particulas es
estresado, las particulas son proyectadas a sus posiciones ideales (Figura 8.17
b, c). Las particulas més pesadas sufren correcciones menores (Figura 8.17 d).
Este proceso se repite para cada restriccion iterativamente, un nimero fijo de

iteraciones.

Asi pues, si dos particulas se encuentran a menor o mayor distancia que

191

Inteligencia de Enjambres en Vision por Ordenador

Constraint satisfaction

a) Distance constraint b) Compressed link
c <p,q,d>
p q
c) Stretched link d) Different masses
— - > . -

Figure 8.17: Satisfaccion de restricciones.

la dictada por el enlace que las une, son proyectadas proporcionalmente segin
sus masas (ver Figura 8.17. Esta proyeccion podra producir la violacién de otras
restricciones, que serdn resueltas en la siguiente iteracién. A mayor ndmero de

iteraciones, mas elasticas se vuelven las estructuras.

La Figura 8.18 muestra el impacto de las iteraciones en la elasticidad en una
malla de particulas que representa un trozo de tela, definida en un entorno donde
se considera la fuerza de la gravedad. Dos extremos de la tela estan clavados al
fondo (ambas particulas tienen masa infinita, por lo que no pueden moverse), pero
el resto evolucionan siguiendo el esquema de integracién verlet, convergiendo al
estado correcto tras varias iteraciones. Un mayor nimero de iteraciones en el
proceso de relajacion produce cuerpos mas rigidos, que por otra parte requieren

menos cuadros para alcanzar un estado de equilibrio.

192

(b) Algunas muestras de los cuadros 0 a 15 del resolvedor en cincuenta iteraciones (malla mas
rigida)

Figure 8.18: Elasticidad de un cuerpo rigido.

Fuerzas externas

Los enlaces entre particulas son considerados restricciones internas, y definen
la forma del cuerpo articulados. Pero cualquiera de estas particulas puede
ser afectada por fuerzas relacionadas con el entorno en el que esta inmersa
la estructura. En los videojuegos y simulaciones, estas fuerzas pueden ser
producidas por una colisién con otro cuerpo rigido, un enlace con un segundo
objeto, la gravedad, viento o la interaccion del usuario, por nombrar algunos

ejemplos.

Algunas de estas fuerzas pueden ser introducidas mediante aceleraciones en
el esquema Verlet. La gravedad o el viendo son ejemplos de fuerzas introducidas
de esta forma. Pero en muchos otros casos resulta mucho mds simple proyectar
a las particulas afectadas a la posicion deseada (por ejemplo, para evitar que una
particula penetre en un obsticulo), tal y como se hace durante la relajacion para

resolver las restricciones.

Asi pues, los procesos no relacionados con la estructura del cuerpo
articulado que afectan a la posicion de una o varias particulas son considerados

fuerzas externas. Las particulas afectadas son simplemente proyectadas a la

193

Inteligencia de Enjambres en Vision por Ordenador

posicion designada o reciben una cierta aceleracion. Las restricciones internas

se encargaran de que el resto del cuerpo articulado reaccione convenientemente.

Es precisamente mediante estas fuerzas externas, definiéndolas como el
resultado de diversos procesos visuales, como los cuerpos articulados presentados

pueden interactuar con imdgenes.

Modelo de ragdoll perceptivo

Cada particula p estara definida por la siguiente 4-tupla: p =<

Ty, Ty, My, Gy, Vp >, p € P, donde:
e 7, es la posicion de la particula en el instante actual.
e L .) .
e I es la posicion de la particula en el instante anterior.
e m, es la masa de la particula.

® @, es la aceleracion de la particula.

e 1/, representa el proceso visual asignado a la particula. En este contexto, V),
puede crear una aceleracion o una proyeccion de la particula segtn la tarea

visual a realizar.

El presente trabajo afiade al sistema propuesto por Jakobsen la capacidad de
percibir y analizar imédgenes digitales, creando fuerzas y proyecciones que
afectan a las particulas en base a un proceso visual subyacente. De esta forma,
cada particula puede realizar actividades como la deteccién, seguimiento o

reconocimiento de objetos independientemente, mientras la estructura a la que

194

pertenece la obliga a permanecer en una misma posicion relativa al resto de

particulas.

Esta propuesta se aplica al seguimiento de objetos en secuencias de video,
logrando estructuras eldsticas y deformables capaces de seguir objetos mientras
tratan de mantener su forma original. La Figura 8.19 muestra como particulas
libres terminan por perderse tras dos rotaciones fuera de plano del objeto
perseguido, mientras que en la Figura 8.20 las mismas particulas, formando parte
de un cuerpo rigido eléstico, consiguen recuperar su forma original tras sufrir

fuertes deformaciones.

Figure 8.19: La mayor parte de las particulas libres son capaces de seguir su objetivo
adecuadamente gracias al banco de vistas, pero muchas de ellas pierden sus objetivos por
culpa de la deriva del patrén utilizado.

Figure 8.20: La solucién de seguimiento basada en Ragdolls consigue recuperar su forma
original tras dos rotaciones fuera de plano, superando con éxito ocultaciones parciales.

195

Inteligencia de Enjambres en Vision por Ordenador

Busqueda de patrones

Si bien cada particula puede adoptar cualquier sistema de seguimiento disponible
en la literatura (incluso distintos sistemas dentro del mismo enjambre), se optd
por dotarlas de un mecanismo de bisqueda de patrones con actualizacion basada

en contexto capaz de adaptarse a los cambios de apariencia del objeto seguido.

Cada particula comparara su descriptor del patrén a seguir con cada posicion
de una ventana de busqueda definida a su alrededor. La funcién de distancia
utilizada (en este caso Suma de Diferencias Absolutas) definird una serie de
optimos locales, que configuran el contexto de la particula. Se tomara el 6ptimo
global como la posicién a la que la particula debe moverse para continuar el
seguimiento, mientras que el primer Optimo local serd usado en la politica de

actualizado del patrén.

La Figura 8.21 muestra una superficie creada mediante la convolucion de un
patrén en una ventana de bisqueda. Los valores de la superficie corresponden a la
medida de similitud entre el patrén y la imagen en cada punto de la ventana. En
la figura se observa un minimo global en my, que corresponde al punto que mejor
casa con el patrén, y dos minimos locales my y ms, que miden la similitud del
contexto (objetos cercanos similares al buscado). La distancia d entre m; y mo se

utiliza en la politica de actualizacidn.

Cada particula puede guardar parches a distintas escalas, permitiendo que
una estructura realice el seguimiento de distintas partes de un objeto a diferentes
escalas. Para ello, todos los patrones de biisqueda y su correspondiente ventana

se definen a un tamafio fijo. Cualquiera que sea el tamaifio del parche utilizado

196

0.9+

0.8

l' 111

:»:‘\‘\}%‘\\\\‘ :’;‘a’t::'ﬂ?"
\\ o’o'¢ i

" W
m
w
'f!

\/

0.7
0.6
0.5

04—

d

Figure 8.21: Minimos en una ventana de busqueda.

por una particula durante el seguimiento, es redimensionado a este tamafio
predeterminado, y lo mismo se hace con su region de busqueda (manteniendo
siempre la misma proporcién). Esto permite que las biisquedas a cualquier escala
se resuelvan con el mismo coste computacional sin importar el tamafio del parche

original. El proceso se muestra en la Figura 8.22.

Search region a

Patch a

[|

Search window a

Search window b

RS

Frame from Ralders of the Lost Arc Search region b

Figure 8.22: Seguimiento a diferentes escalas en tiempo constante.

197

Inteligencia de Enjambres en Vision por Ordenador

Actualizacion del patron de bisqueda

Esta actualizacion racional del patron de busqueda (y del banco de vistas)
consigue que cada particula guarde un conjunto de vistas representativas y no
redundantes del objeto seguido. Para ello, es el contexto de la particula el que
dicta cudndo ésta debe actualizar su descriptor. Esta condicién viene dada por
los valores de los minimos locales, vistos en la Figura 5.8. Concretamente, se

actualizara en dos ocasiones:

1. El minimo global m estd por encima del umbral de actualizacién 7, lo que

significa que la apariencia del objeto ha variado significativamente, o

2. el segundo minimo my estd por debajo del umbral de actualizacién 7, lo
que significa que hay un objeto en la ventana de busqueda que es demasiado

similar al que estamos siguiendo.

Al realizar la actualizacion, se calcula el nuevo umbral como:

La actualizacion por contexto crea distintas frecuencias de actualizacion para cada
particula. En la Figura 8.23 se muestran todas las actualizaciones del patron de
busqueda sufridas por seis particulas distintas. Se detallan seis cuadros de una
secuencia de cuarenta y dos de Cazafantasmas, de Ivan Reitman. Bajo éstos, cada
linea muestra las vistas capturadas por seis particulas diferentes. Los circulos
verdes muestran la vista utilizada al terminar la secuencia, mientras que los rojos

muestran la vista que peor casé con la ventana de busqueda en ese momento.

198

Noétese que la mejor vista no es siempre la dltima. Cada particula actualiza su

patron segun su contexto.

Figure 8.23: Actualizacién basada en contexto

199

Inteligencia de Enjambres en Vision por Ordenador

Banco de vistas

Cada particula guarda un conjunto de vistas de su objetivo, lo que representa una
memoria visual a corto plazo donde se guarda la apariencia reciente del objeto
perseguido. En cada iteracion cada particula realiza la bisqueda de cada una de las
vistas contenidas en su memoria visual en la ventana de busqueda, y tomard como

vista actual la que obtenga el mejor valor devuelto por la funcién de comparacion.

Debido a la capacidad finita de computo y almacenamiento, el tamafio del
banco de vistas debe ser limitado (en el presente trabajo el limite son tres vistas
por particula). Es por lo tanto necesario decidir qué vista debe ser sustituida en
caso de que el banco de vistas esté lleno y haya que actualizar. Para ello se utiliza
una medida de la utilidad de cada vista, a partir de su persistencia (durante cuantos
cuadros ha sido utilizada) y su obsolescencia (cudndo fue la dltima vez que fue

utilizada). Asi, la utilidad queda definida como:

utilidad = persistencia/(1.0 + obsolescencia) (8.7)

La vista de menor utilidad es sustituida por la nueva vista, manteniendo la
memoria visual actualizada con las vistas recientes mas utilizadas (de ahi que
sea considerada una memoria a corto plazo). Con el fin de evitar que las
particulas olviden completamente la apariencia original del objeto seguido debido
a sucesivas actualizaciones del patron, se considera el uso de una vista canonica.
Esta vista no se actualiza nunca, representando una primitiva memoria a largo

plazo.

Si el seguidor es creado sobre una perspectiva habitual del objeto seguido

200

(por ejemplo, una cara frontal), es aceptable suponer que las vistas contendran un
patron fiable de la apariencia de su parte correspondiente del objeto. Estas vistas
canodnicas son susceptibles de volver a aparecer en algiin momento de la secuencia,

sin importar las ocultaciones que puedan sufrir en un momento determinado.

Las vistas candnicas dejan de ser utiles cuando cambia la apariencia del
objeto de forma permanente o durante un tiempo excesivamente largo. Si la
alteracion se debe a cambios de iluminacidn, el uso de descriptores invariantes
puede aliviar el problema. Sin embargo, estas vistas dejan de ser utiles cuando un
objeto muestra una perspectiva completamente nueva de si mismo (por ejemplo,
una cabeza gira para mostrar la nuca en lugar de la cara o un coche que
previamente veiamos de lado gira y se enfrenta a la cdmara). Para abordar
estos casos parece necesario el uso de conocimiento previo sobre el objeto, ya
que el seguidor necesita conocer la nueva apariencia para reconocer en ésta al
mismo objeto que venia siguiendo. Puesto que en este trabajo se considera

exclusivamente el seguimiento precategorico, estos casos no son considerados.

Forma de las estructuras

La estructura que crean las particulas tendra una forma u otra dependiendo de los
enlaces entre particulas. Los cuerpos articulados pueden ser construidos con la
forma de un objeto conocido, adoptando por ejemplo una estructura facial creada
a partir de puntos anotados manualmente o la forma de un esqueleto humano
simplificado (ver Figura 8.24). Esto permite incluir informacion a priori del objeto
a estudiar, aunque debido al cardcter precategdrico del presente trabajo esta opcion

no ha sido considerada.

201

Inteligencia de Enjambres en Vision por Ordenador

(a) (b)

Figure 8.24: Estructuras definidas por el usuario

El trabajo propuesto considera diversas estructuras genéricas. La mas
simple consiste en una rejilla en cuyos vértices se colocan las particulas y donde
los enlaces pueden ser de cada particula hacia los cuatro (ver Figura 8.25 a)
u ocho vecinos directos. Otra configuracion consiste en colocar las particulas
en las localizaciones definidas por un detector de puntos salientes (con o sin
escala) (ver Figuras 8.25 b y 8.25 c) y crear los enlaces entre ellas a partir
de la triangularizacién de Delaunay que definen las particulas. Esta segunda
configuracion tiene la ventaja de que las particulas se crean en puntos que son, por
definicion, interesantes para un sistema de seguimiento. Ademads, son estructuras

mads robustas que no pueden plegarse sobre si mismas.

Al utilizar un detector de puntos saliente en escala como DoG o SURF se
obtiene no solo una buena localizacién espacial de cada particula sino también su

escala Optima en ese punto. Los ragdolls creados utilizando este tipo de detectores

202

Figure 8.25: Tres configuraciones genéricas de la estructura: a) Regilla simple de parches
no superpuestos de 19x19 pixeles. b)Triangulacion de Delaunay de puntos KLT, usando
parches de 19x19 pixeles. c) Triangulacién de Delaunay de puntos salientes SURF con
escala

estdn compuestos por particulas de diferentes tamaios (esto es, particulas cuyas

vistas tienen un tamafio diferente del de otras particulas).

Gracias al sistema mostrado en la Figura 8.22 el seguimiento se realizara
a distintas escalas al mismo tiempo. Esto facilita el seguimiento de objetos de
movimiento rdpido y robustece la calidad del seguimiento en términos generales,
al permitir al seguidor seguir detalles de distinto tamafio. Por otra parte, las
estructuras creadas a partir de la triangulacion de puntos salientes en escala suelen

ser mucho mads rigidas, limitando las posibles deformaciones.

203

Inteligencia de Enjambres en Vision por Ordenador

Calidad del seguimiento y pesos de las particulas

Se plantea la necesidad de evaluar la calidad del seguimiento. Esta medida de

calidad define la masa de cada particula, lo que a su vez influye en cémo ésta

responde ante las fuerzas creadas por las restricciones internas. Las particulas de

mayor masa tienen mayor capacidad de arrastre de la estructura (su voto es mas

importante). Se evaldan distintas medidas:

1. Calidad del seguimiento: las particulas son asignadas un peso obtenido del

204

optimo global en la ventana de busqueda. Asi, las particulas cuya vista
actual encuentra buena correspondencia son asignadas pesos mayores. Sin
embargo, que la funcién de similitud devuelva un buen valor no asegura
la calidad del seguimiento, ya que los bancos de vistas pueden haberse
corrompido en algiin momento, incorporando vistas extrafias. Tan sélo el

seguimiento de vistas no actualizadas puede considerarse fiable.

Utilidad: la fiabilidad de una vista viene dada por su utilidad. Una vista
con alta persistencia y baja obsolescencia es idealmente una vista util. Sin
embargo, una particula perdida también puede acumular una alta utilidad si

se persigue una misma vista incorrecta durante mucho tiempo.

. Combinacién de la calidad del seguimiento y la utilidad: idealmente, el

seguimiento de calidad deberia corresponder a un buen valor de la funcién
de similitud unido a una alta utilidad. Sin embargo, dado que ninguna de las
dos medidas es de por si completamente fiable, tampoco su combinacién lo

€S.

4. Andlisis de la peor vista: la vista con el peor valor de similitud es aquella
que mas difiere de la posicidn localizada por la mejor vista, y por lo tanto la
mds diferente de todo el banco de vistas. Su medida de similitud representa
como de heterogéneo es el banco de vistas: si es demasiado alta, significa
que el banco contiene patrones muy diferentes entre si, lo que puede ser
una pista que indique que en algin momento se produjo una actualizacién
incorrecta. El peso de las particulas podria ser asignado segun este peor
valor, diandole mayor importancia a aquellas particulas cuyos bancos de

vistas sean mds homogéneos.

Sin embargo, la diferencia entre la peor y la mejor vista podria venir dada
no por un error en la actualizacién, sino porque realmente la apariencia
del objeto haya sufrido un cambio drastico y haya sido necesario reflejarlo

actualizando.

5. Estrés de los enlaces: el nivel de estrés en los enlaces salientes de una
particula aumenta si ésta se aleja excesivamente de su posicion relativa en el
grupo. Un alto nivel de estrés puede indicar que una particula esta siguiendo
un objetivo equivocado, pero también puede significar que es la Gnica que
ha descubierto un cambio significativo en el objeto. En este segundo caso,

penalizarla puede conllevar la pérdida del objeto seguido.

6. Pesos homogéneos: dado que ninguna de las medidas anteriores parece ser
realmente fiable, tal vez las particulas deberian tener todas un peso unitario
y permitir que sea la dindmica y el reajuste de la estructura por restricciones

internas el mecanismo corrector de las particulas mal colocadas.

205

Inteligencia de Enjambres en Vision por Ordenador

Elasticidad del Ragdoll

El nimero de iteraciones en el proceso de solucion de restricciones limita la

elasticidad de toda la estructura e influencia el seguimiento.

Las estructuras eldsticas permiten que las particulas sigan sus objetivos con
un mayor grado de independencia. Las particulas pueden explorar su espacio
de busqueda y moverse sin demasiados limites, deformando al ragdoll como se

muestra en la Figura 8.26 a.

Un mayor nimero de iteraciones produce estructuras mas rigidas. Las
particulas todavia pueden explorar su espacio de biisqueda, pero no se les permite
alejarse demasiado de su posicion relativa esperada dentro de la estructura. Las
particulas mal colocadas son rapidamente corregidas como se muestra en la Figura

8.26 b, limitando las deformaciones.

En ambos casos, la forma original es recuperada después de ser deformada
gracias a aquellas particulas que permanecen sobre partes visibles del objeto
seguido. Su valor de utilidad en esos casos deberia ser mayor que el de las
particulas que perdieron su objetivo, las cuales serdn arrastradas hacia la posiciéon

adecuada.

206

Figure 8.26: La rigidez limita la libertad de movimientos. Con tan solo dos iteraciones
en el paso de resolucién de restricciones, las estructuras resultantes son muy eldsticas (a).
Con diez iteraciones, la estructura es mucho maés rigida (b). Aun asi, las estructuras en
rejilla como las usadas en el ejemplo pueden plegarse sobre si mismas, no importa su
rigidez. En ambos casos, la estructura es capaz de recuperar su forma después de fuertes
deformaciones si suficientes particulas permanecen sobre sus objetivos adecuadamente.

La recuperacion de la forma puede verse afectada por las actualizaciones de
los patrones. Si las particulas actualizan sus vistas, pueden incorporar partes de
objetos extrafos y acumular utilidad (por ejemplo, guardando vistas del objeto que
oculta momentdneamente al objeto seguido). A no ser que el cuerpo articulado
contenga suficientes restricciones, estas particulas pueden no ser devueltas a su

lugar dentro de la estructura.

207

Inteligencia de Enjambres en Vision por Ordenador

8.5 Conclusiones

La presente tesis ha abordado el tema de la Inteligencia de Enjambres en la Vision
por Ordenador, aplicidndola al seguimiento de objetos. La parte principal del
trabajo se ha centrado en la propuesta y desarrollo de dos novedosos sistemas
basados en enjambres que son capaces de seguir objetos visuales en secuencias de

video en una gran variedad de escenarios reales.

El primer modelo considera una estructura pura de enjambres cuyos
miembros se guian por factores psico-sociales en una metafora depredador-presa,
mientras que el segundo modelo propone un enjambre cuyos individuos estian
sujetos a restricciones estructurales que conforman una estructura eldstica. La
tesis incluye resultados cuantitativos obtenidos al aplicar ambos métodos en
cinco secuencias representativas (aunque durante el trabajo se utilizaron muchas
otras). El trabajo presentado en esta tesis puede ser resumido en las siguientes

conclusiones:

1. La Inteligencia de Enjambres y las soluciones basadas en poblaciones
estdn inspiradas en modelos bioldgicos. El comportamiento de los insectos
sociales ha probado ser especialmente adecuado para el control distribuido
y para la resolucién de problemas de optimizacién en un amplio rango
de aplicaciones. Aunque algunas aproximaciones consideran modelos
tedricos detallados del comportamiento de la criatura, grupo o actividades
que simulan (como el depésito y evaporacion de feromonas en colonias
de hormigas), muchas otras se apoyan en potentes metaforas (PSO y

algoritmos genéticos) para lograr sistemas exitosos.

208

2. Abordar un problema a través de metaforas generalmente permite
desarrollar el pensamiento lateral, lo que suele conllevar el descubrimiento
de soluciones alternativas que de otra forma no habrian sido consideradas.
Mediante el uso de metéforas, el problema se replantea como una situacion
andloga. La atencién se centra entonces en encontrar soluciones al meta-
problema. Finalmente, las ideas generadas son aplicadas a la tarea original,
si fuese posible. Este procedimiento es ampliamente aceptado en el arte y

el disefio, donde la creatividad es crucial.

3. La aplicacion de la Inteligencia de Enjambres a tareas conocidas de la
Visién por Ordenador como el seguimiento precategdrico de objetos crea
nuevas y estimulantes aproximaciones a los problemas visuales. Segun
los miembros del enjambre se centran en sus trabajos, cuidadosamente
disenados para ser relativamente simples e independientes, las soluciones
a problemas complejos emergen gracias a la sinergia y/o estigmergia. El
seguimiento, en el trabajo presente, emerge de las interacciones sociales y

fisicas entre individuos.

4. La mayor parte de las soluciones al seguimiento encontradas en la literatura
utilizan un Gnico 6ptimo para localizar la nueva posicion del objeto seguido,
desestimando otras posiciones alternativas. El seguimiento en estos casos
continda en cada iteracion desde una Unica posicion anterior. Las soluciones
basadas en Inteligencia de Enjambres pueden aprovecharse de la naturaleza
distribuida de sus miembros para seguir multiples partes de un objeto o

multiples representaciones del mismo simultdneamente.

5. Todo sistema de seguimiento precategorico, incluso siguiendo una

209

Inteligencia de Enjambres en Vision por Ordenador

210

politica de actualizacion de patrones prudente como la basada en
contexto, es propenso a perder el objeto seguido en numerosas
circunstancias. Las soluciones distribuidas como las propuestas
alivian en parte el problema principal, ya que los mismos individuos
que componen las poblaciones se autoregulan mediante diversos
mecanismos (comportamientos direccionales, restricciones internas, mapas

de feromonas...).

8.5.1 Trabajo Futuro

El trabajo presentado ha generado varias lineas de investigacion que merecen

atencion:

1. Exploracion de rutas alternativas. Los Optimos locales descartados en
las ventanas de buisqueda podrian servir para crear nuevas particulas,
eliminando otras segin su edad, salud o densidad de poblacién local.
Estos 6ptimos locales representan objetos en la vecindad de cada particula
cuya apariencia es muy semejante a la del objeto seguido. Al crear
nuevas particulas en dichas posiciones, la colonia seria capaz de registrar
la evolucion de estas rutas alternativas, lo que podria permitirle superar

situaciones complicadas.

2. Extraccion automadtica de caracteristicas discriminantes. Cada particula
podria, en cada instante, decidir qué caracteristicas maximizan la diferencia
entre el objeto seguido y el entorno circundante. De esta manera podrian
adaptarse a los cambios de apariencia segin el contexto y optimizar la

funcion de similitud.

3. Considerar nuevos tipos de restricciones en el modelo ragdoll. Actualmente
solo se utilizan restricciones de distancia, pero podrian considerarse otros

tipos como restricciones angulares o restricciones maleables.

4. Enjambres compuestos. Actualmente, docenas de particulas seguidoras
independientes crean una tnica entidad seguidora. Podrian docenas de estas

entidades agruparse para crear un superorganismo? Semejante estructura

211

Inteligencia de Enjambres en Vision por Ordenador

212

podria estar compuesta de entidades heterogéneas con distintos objetivos,
procedimientos y reglas. Por ejemplo, unas entidades podrian centrarse en
la deteccion de caracteristicas u objetos mientras que otras se especializan
en su seguimiento. Las dos soluciones propuestas permiten cuatro tipos
de enjambres compuestos: enjambres de enjambres, enjambres de ragdolls,

ragdolls de enjambres y ragdolls de ragdolls.

. Explorar nuevas aplicaciones de las estructuras ragdoll propuestas. La

aplicacion de estas estructuras al andlisis de gestos y poses (del cuerpo
humano, de caras, de manos...) es directa. Estructuras predefinidas con
la forma del objeto a analizar (por ejemplo, un grafo similar al esqueleto
humano), combinadas con conocimiento del objeto adquirido mediante
entrenamiento, tanto de su dindmica como de su apariencia, parece una linea
de trabajo prometedora. Estos sistemas podrian ser utilizados para obtener

detectores, seguidores y reconocedores de clases especificas.

Bibliography

Abraham, A., Das, S., and Roy, S. (2007). Swarm intelligence algorithms for data
clustering. Soft Computing for Knowledge Discovery and Data Mining.

Adam, A., Rivlin, E., and Shimshoni, I. (2006). Robust fragments-based tracking
using the integral histogram. In CVPR ’06: Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pages 798-805, Washington, DC, USA. IEEE Computer Society.

Adelson, E. H., Anderson, C. H., Bergen, J. R, Burt, P. J., and Ogden, J. M.
(1984). Pyramid methods in image processing. RCA Engineer, 29(6):33-41.

Allen, J. G., Xu, R. Y. D., and Jin, J. S. (2004). Object tracking using camshift
algorithm and multiple quantized feature spaces. In VIP ’05: Proceedings of
the Pan-Sydney area workshop on Visual information processing, pages 3—7.
Australian Computer Society, Inc.

Antén-Canalis, L., Hernandez-Tejera, M., and Sanchez-Nielsen, E. (2006a).
Addcanny: Edge detector for video processing. In ACIVS06, pages 501-512.

Anton-Canalis, L., Hernandez-Tejera, M., and Sanchez-Nielsen, E. (2006b).
Particle swarms as video sequence inhabitants for object tracking in computer
vision. Intelligent Systems Design and Applications, 2006. ISDA ’06. Sixth
International Conference on, 2:604—609.

Anton-Canalis, L., Hernandez-Tejera, M., and Séanchez-Nielsen, E. (2006c).
Swarmtrack: A particle swarm approach to visual tracking. VISAPP 2006
Proceedings.

213

Bibliography

Anton-Canalis, L., Herndndez-Tejera, M., and Sédnchez-Nielsen, E. (2007).
Analysis of relevant maxima in distance transform. an application to fast
coarse image segmentation. In IbPRIA '07: Proceedings of the 3rd Iberian
conference on Pattern Recognition and Image Analysis, Part I, pages 97-104,
Berlin, Heidelberg. Springer-Verlag.

Arikan, O., Forsyth, D. A., and O’Brien, J. F. (2003). Motion synthesis from
anotations. In Proceedings of ACM SIGGRAPH 2003, pages 402—408.

Arnaud, Doucet, and Johansen (2008). A tutorial on particle filtering and
smoothing: Fifteen years later. Technical report.

Bagon, S., Boiman, O., and Irani, M. (2008). What is a good image segment?
a unified approach to segment extraction. In Forsyth, D., Torr, P., and
Zisserman, A., editors, Computer Vision — ECCV 2008, volume 5305 of
LNCS, pages 30—44. Springer.

Bay, H., Tuytelaars, T., and Gool., V. (2006). Surf: Speeded up robust features.
In 9th European Conference on Computer Vision, Graz Austria.

Bazazi, S., Buhl, J., Hale, J. J., Anstey, M. L., Sword, G. A., Simpson, S. J., and
Couzin, I. D. (2008). Collective motion and cannibalism in locust migratory
bands. Current Biology.

Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching and object
recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell.,
24(4):509-522.

Beni, G., W.J. (1989). Swarm intelligence in cellular robotic systems. In Proceed.
NATO Advanced Workshop on Robots and Biological Systems.

Birchfield, S. and Rangarajan, S. (2005). Spatiograms versus histograms for
region-based tracking. Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, 2:1158-1163 vol. 2.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence. From
Natural to Artificial Systems. Oxford University Press, Inc., New York,
Oxford, USA.

Borenstein, E. and Ullman, S. (2002). Class-specific, top-down segmentation.
Computer Vision - ECCV 2002 : 7th European Conference on Computer
Vision, Copenhagen, Denmark, May 28-31, 2002. Proceedings, Part 11, pages
639-641.

214

Borenstein, E. and Ullman, S. (2004). Learning to segment. In ECCV (3), pages
315-328.

Borgefors, G. (1988). Hierarchical chamfer matching: A parametric edge
matching algorithm. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 10(6):849-865.

Bourjot, C., Chevrier, V., and Thomas, V. (2003). A new swarm mechanism
based on social spiders colonies: From web weaving to region detection.
Web Intelligence and Agent Systems, 1(1):47-64.

Bradski, G. R. (1998). Computer vision face tracking for use in a perceptual user
interface. Intel Technology Journal.

Buchner, L. (1881). La vie psychique des bétes. Paris: Reinwald.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., and
Bonabeau, E. (2001). Selforganization in biological systems. Princeton
University Press.

Canny, J. (1986). A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell., 8(6):679-698.

Capell, S., Green, S., Curless, B., Duchamp, T., and Popovi¢, Z. (2002).
Interactive skeleton-driven dynamic deformations. ACM Trans. Graph.,
21(3):586-593.

Casakin, H. P. (2007). Metaphors in design problem solving: Implications for
creativity. International Journal of Design, 1(2).

Chen, D. and Yang, J. (2005). Online learning of region confidences for object
tracking. In ICCCN ’05: Proceedings of the 14th International Conference
on Computer Communications and Networks, pages 1-8, Washington, DC,
USA. IEEE Computer Society.

Chen, J., Pappas, T. N., Mojsilovic, A., and Rogowitz, B. E. (2003). Image
segmentation by spatially adaptive color and texture features. Image
Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference
on, 1:1-1005-8 vol.1.

Cheng, Y. (1995). Mean shift, mode seeking, and clustering. /IEEE Trans. Pattern
Anal. Mach. Intell., 17(8):790-799.

215

Bibliography

Collins, R. T. (2003). Mean-shift blob tracking through scale space. Computer
Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer
Society Conference on, 2:11-234—40 vol.2.

Collins, R. T. and Liu, Y. (2003). On-line selection of discriminative tracking
features. In ICCV ’03: Proceedings of the Ninth IEEE International
Conference on Computer Vision, page 346, Washington, DC, USA. IEEE
Computer Society.

Comaniciu, D. and Meer, P. (2002). Mean shift: a robust approach toward
feature space analysis. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(5):603-619.

Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernel-based object
tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
25(5):564-5717.

Consoli, S., Moreno—PA@rez, J. A., Darby-Dowman, K., and Mladenovic, N.
(2007). Discrete particle swarm optimization for the minimum labelling
steiner tree problem. In Krasnogor, N., Nicosia, G., Pavone, M., and Pelta,
D. A., editors, NICSO, volume 129 of Studies in Computational Intelligence,
pages 313-322. Springer.

Cootes, T. F., Edwards, G. J., and Taylor, C. J. (1998). Active appearance models.
Lecture Notes in Computer Science, 1407:484-77

Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1995). Active
shape models—their training and application. Comput. Vis. Image Underst.,
61(1):38-59.

Davies, R. H., Cootes, T. F., and Taylor, C. J. (2001). A minimum description
length approach to statistical shape modelling. In IPMI ’01: Proceedings
of the 17th International Conference on Information Processing in Medical
Imaging, pages 50-63, London, UK. Springer-Verlag.

Dehuri, S. and Cho, S.-B. (2009). Multi-criterion pareto based particle swarm
optimized polynomial neural network for classification: A review and state-
of-the-art. Computer Science Review, 3(1):19 — 40.

Delaunay, B. (1934). Sur la sphA're vide. Izvestia Akademii Nauk SSSR,
Otdelenie Matematicheskikh i Estestvennykh Nauk, 7:793—-800.

Denebourg, J., Pasteels, J., and Verhaeghe, J. (1983). Probabilistic behaviour in
ants: a strategy of errors. Journal of Theoretical Biology.

216

Deriche, R. (1987). Using canny’s criteria to derive a recursively implemented
optimal edge detector. International Journal of Computer Vision, 1(2):167—
187.

Deutscher, J., Blake, A., and Reid, 1. (2000). Articulated body motion capture by
annealed particle filtering. Computer Vision and Pattern Recognition, 2000.
Proceedings. IEEE Conference on, 2:126—133 vol.2.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms, PhD thesis.
Politecnico di Milano.

Dorigo, M. and Stiitzle, T. (2004). Ant Colony Optimization. MIT Press.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern classification (2nd
edition). Wiley.

Edelman, S. (1999). Representation and recognition in vision. MIT Press,
Cambridge, MA, USA.

Engelbrecht, A. P. (2005). Fundamentals of Computational Swarm Intelligence.
Wiley.

Fieguth, P. and Terzopoulos, D. (1997). Color-based tracking of heads and other
mobile objects at video frame rates. In in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, pages 21-27.

Fogel, I. and Sagi, D. (1989). Gabor filters as texture discriminator. Biological
Cybernetics, 61:102-113.

Forel, A. (1921). Le monde social des fourmis du globe comparé a celui de
lhomme. Geneve: Librairie Kundig.

Forsyth, D. and Ponce, J. (2003). Computer Vision: A Modern Approach. NI:
Prentice-Hall.

Fourcassi, V. and Deneubourg, J. (1994). The dynamics of collective exploration
and trail-formation in monomorium pharaonis: experiments and model.
Physiological Entomology.

Freddolino, P. L., Arkhipov, A. S., Larson, S. B., Mcpherson, A., and Schulten,
K. (2006). Molecular dynamics simulations of the complete satellite tobacco
mosaic virus. Structure, 14(3):437-449.

217

Bibliography

Fritsch, J., Lang, S., Kleinehagenbrock, A., Fink, G., and Sagerer, G. (2002).
Improving adaptive skin color segmentation by incorporating results from
face detection. Robot and Human Interactive Communication, 2002.
Proceedings. 11th IEEE International Workshop on, pages 337-343.

Fukunaga, K. and Hostetler, L. (1975). The estimation of the gradient of a density
function, with applications in pattern recognition. Information Theory, IEEE
Transactions on, 21(1):32-40.

Goldman, D. B., Gonterman, C., Curless, B., Salesin, D., and Seitz, S. M.
(2008). Video object annotation, navigation, and composition. In UIST ’08:

Proceedings of the 21st annual ACM symposium on User interface software
and technology, pages 3—12, New York, NY, USA. ACM.

Gordon, D. M. (2007). Control without hierarchy. Nature.

Grasp, C. T. and Taylor, C. J. (2000). Reconstruction of articulated objects from
point correspondences in a single uncalibrated image. Computer Vision and
Image Understanding, 80:677-684.

Grass, P. P. (1959). La reconstruction du nid et les coordinations inter-
individuelles chez bellicositermes natalensis et cubitermes sp. la thorie de la
stigmergie : essai dinterprtation du comportement des termites constructeurs.
Insectes Sociaux.

Greenspan, H., Belongie, S., Goodman, R., and Perona, P. (1994). Rotation
invariant texture recognition using a steerable pyramid. In in Proc. Int. Conf.
on Pattern Recognition, pages 162—-167.

Guerra, C. (2002). Contribuciones al seguimiento visual precategorico. PhD
thesis, Universidad de Las Palmas de Gran Canaria.

Guerra, C., Hernandez, M., Dominguez, A., and Hernandez, D. (2005). A new
approach to the template update problem. Lecture Notes in Computer Science
LNCS, (3522):217-224.

Hagedoorn, M. (2000). Pattern Matching using similarity measures. PhD thesis,
Utrecht University.

Hager, G., Dewan, M., and Stewart, C. (2004). Multiple kernel tracking with ssd.
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on, 1:1-790-1-797 Vol.1.

218

Handl, J., Knowles, J., and Dorigo, M. (2003). On the performance of ant-based
clustering. In Design and application of hybrid intelligent systems, pages
204-213. IOS Press, Amsterdam, The Netherlands, The Netherlands.

Harris, C. and Stephens, M. (1988). A combined corner and edge detection. In
Proceedings of The Fourth Alvey Vision Conference, pages 147—-151.

Heikkila, M. (2006). A texture-based method for modeling the background
and detecting moving objects. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(4):657-662.

Heinlein, R. A. (1987). Starship Troopers. Ace.

Heppner, F. and Grenander, U. (1990). A stochastic nonlinear model for
coordinated bird flocks. The Ubiquity of Chaos.

Hinrichs, N. S. and Pande, V. S. (2007). Calculation of the distribution
of eigenvalues and eigenvectors in markovian state models for molecular
dynamics. The Journal of Chemical Physics, 126(24).

Holland, J. H. (1992). Adaptation in natural and artificial systems. MIT Press,
Cambridge, MA, USA.

Holldobler, B. (1990). The ants. Cambridge: Harvard University Press.

Hu, X., , Y. S., and Eberhart, R. (2004). Recent advances in particle swarm.
Congress on Evolutionary Computation. CEC2004, 1:90-97.

Hu, X. and Eberhart, R. C. (2002). Adaptive particle swarm optimization:
Detection and response to dynamic systems. Proceedings of the IEEE
Congress on Evolutionary Computation. CEC 2002, 2(12-17):1666—-1670.

Huttenlocher, D., Klanderman, G., and Rucklidge, W. (1993). Comparing images
using the hausdorff distance. [EEE Transactions on Pattern Analysis and
Machine Intelligence, 15(9):850-863.

Isard, M. and A., B. (1998). Condensation-conditional density propagation for
visual tracking. International Journal of Computer Vision, (29(1)):5-28.

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual
attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell.,
20(11):1254-1259.

Jakobsen, T. (2001). Advanced character physics. TechReport, 10 Interactive.

219

Bibliography

Jha, S., Casey-Ford, R. G., Pedersen, J. S., Platt, T. G., Cervo, R., Queller,
D. C., and Strassmann, J. E. (2006). The queen is not a pacemaker in the
small-colony wasps polistes instabilis and p. dominulus. Animal Behaviour,
71(5):1197-1203.

Jiang, M., Mastorakis, N., Yuan, D., and Lagunas, M. (2007). Multi-threshold
image segmentation with improved artificial fish swarm algorithm. In
European Computing Conference (ECC).

Jones, J. and Saeed, M. (2007). Image enhancement - an emergent pattern
formation approach via decentralised multi-agent systems. Multiagent Grid
Syst., 3(1):105-140.

Jost, C., Verret, J., Casellas, E., Gautrais, J., Challet, M., Lluc, J., Blanco, S.,
Clifton, M. J., and ., G. T. (2006). The interplay between a self-organized
process and an environmental template: corpse clustering under the influence
of air currents in ants. Journal of the Royal Society Interface, 4:107-116.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME—Journal of Basic Engineering, 82(Series D):35—
45.

Kambhamettu, C., Goldgof, D. B., Terzopoulos, D., and Huang, T. S. (1994).
Nonrigid motion analysis. Handbook of Pattern Recognition and Image
Processing: Computer vision, 2:405-430.

Karsai, I. and Theraulaz, G. (1995). Nest building in a social wasp: postures and
constraints. Sociobiology.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour
models. International Journal of Computer Vision, V1(4):321-331.

Kennedy and James (2007). Review of engelbrecht’s fundamentals of

computational swarm intelligence. Genetic Programming and Evolvable
Machines, 8(1):107-109.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. Proceedings
of IEEE International Conference on Neural Networks, IV:1492—1948.

Kennedy, J. and Eberhart, R. C. (2001). Swarm intelligence. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Kobayashi, T., Nakagawa, K., Imae, J., and Zhai, G. (2007). Real
time object tracking on video image sequence using particle swarm

220

optimization. Control, Automation and Systems, 2007. ICCAS ’07.
International Conference on, pages 1773—-1778.

Kolsch, M. and Turk, M. (2005). Hand tracking with flocks of features. Video
Proc. CVPR IEEE Conference on Computer Vision and Pattern Recognition.

Koza, J. (1994). Genetic programming II: Automatic discovery of
reusable programs. Massachusetts Institute of Technology, Cambridge,
Massachusetts.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection (Complex Adaptive Systems). The MIT Press.

Koza, J. R. (2003). Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers, Norwell, MA, USA.

Koza, J. R., Andre, D., Bennett, F. H., and Keane, M. A. (1999). Genetic
Programming 1Il: Darwinian Invention & Problem Solving. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Leibe, B., Leonardis, A., and Schiele, B. (2008). Robust object detection
with interleaved categorization and segmentation. International Journal of
Computer Vision, 77(1):259-289.

Lettvin, J. Y., Maturana, H. R., Mcculloch, W. S., and Pitts, W. H. (1940). What
the frog’s eye tells the frog’s brain. In Proceedings of the IRE.

Lindeberg, T. (1993). Detecting salient blob-like image structures and their
scales with a scale-space primal sketch: a method for focus-of-attention.
International Journal of Computer Vision, 11:283-318.

Lindeberg, T. (1998). Feature detection with automatic scale selection.
International Journal of Computer Vision, 30:79—-116.

Liu, T., Sun, J., Zheng, N.-N., Tang, X., and Shum, H.-Y. (2007). Learning to
detect a salient object. In Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on, pages 1-8.

Lowe, D. (1999). Object recognition from local scale-invariant features.
Computer Vision, 1999. The Proceedings of the Seventh IEEE International
Conference on, 2:1150-1157 vol.2.

Maskell, S. and Gordon, N. (2002). A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking. [EEE Transactions on Signal
Processing, 50:174—188.

221

Bibliography

Masson, L., Dhome, M., and Jurie, F. (2005). Tracking 3d objects using
flexible models. In Proceedings of the 2005 IEEE British Machine Vision
Conference.

Matthews, 1., Ishikawa, T., and S., B. (2004). The template update problem. /IEEE
Transactions on Pattern Analysis and Machine Intelligence, (26(6)):810—
815.

Meyer, F. and Beucher, S. (1990). Morphological segmentation. Journal of Visual
Communication and Image Representation.

Mikolajczyk, K. and Schmid, C. (2001). Indexing based on scale invariant interest
points. In Proceedings of the Sth International Conference on Computer
Vision, Vancouver, Canada, pages 525-531.

Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local
descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 27(10):1615-1630.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J.,
Schaffalitzky, F., Kadir, T., and Van Gool, L. (2005). A comparison of affine
region detectors. Int. J. Comput. Vision, 65(1-2):43-72.

Miller, P. (2007). Swarm theory. the genius of swams. National Geographic.

Mitchell, M. (1998). An Introduction to Genetic Algorithms (Complex Adaptive
Systems). The MIT Press.

Moravec, H. (1979). Visual mapping by a robot rover. In Proceedings of the 6th
International Joint Conference on Artificial Intelligence, pages 599-601.

Mori, G. (2005). Guiding model search using segmentation. Computer Vision,
2005. ICCV 2005. Tenth IEEE International Conference on, 2:1417-1423
Vol. 2.

Mori, G. and Malik, J. (2006). Recovering 3d human body configurations
using shape contexts. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(7):1052—-1062.

Mori, G., Ren, X., Efros, A. A., and Malik, J. (2004). Recovering human
body configurations: combining segmentation and recognition. In Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 2, pages [1-326-11-333
Vol.2.

222

Mundhenk, T. N., Everist, J., Landauer, C., Itti, L., and Bellman, K. (2005).
Distributed biologically-based real-time tracking in the absence of prior
target information. In Casasent, D. P., Hall, E. L., and Roning, J., editors,
Proc. SPIE International Conference on Intelligent Robots and Computer
Vision XXIII: Algorithms, Techniques, and Active Vision, volume 6006, pages
142—153, Bellingham, WA. SPIE Press.

Murray, C., Merrick, D., and Takatsuka, M. (2004). Graph interaction
through force-based skeletal animation. In APVis '04: Proceedings of the
2004 Australasian symposium on Information Visualisation, pages 81-90,
Darlinghurst, Australia, Australia. Australian Computer Society, Inc.

Ngo, J. T. and Marks, J. (1993). Spacetime constraints revisited. In SIGGRAPH,
pages 343-350.

Ofria, C. and Wilke, C. O. (2004). Avida: a software platform for research in
computational evolutionary biology. Artificial Life, 10(2):191-229.

Ojala, T., Pietikdinen, M., and Méenpiai, T. (2002). Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns. /EEE
Trans. Pattern Anal. Mach. Intell., 24(7):971-987.

Ouadfel, S. and Batouche, M. (2007). An Efficient Ant Algorithm for Swarm-
Based Image Clustering. Journal of Computer Science, 3(3):162—-167.

Owechko, Y. and Medasani, S. (2005). Cognitive swarms for rapid detection of

objects and associations in visual imagery. Swarm Intelligence Symposium.
SIS 2005. Proceedings 2005 IEEE, (8-10):420-423.

Park, S.-J., Shin, J.-K., and Lee, M. (2002). Biologically inspired saliency map
model for bottom-up visual attention. In BMCV ’02: Proceedings of the

Second International Workshop on Biologically Motivated Computer Vision,
pages 418-426, London, UK. Springer-Verlag.

Partridge, B. L. and Pitcher, T. J. (1980). The sensory basis of fish schools: relative
roles of lateral line and vision. J. Comp. Physiol., (135A):315325.

Perlin, K. (1984). Acm siggraph. In Course in Advanced Image Synthesis.

Perlin, K. (1985). An image synthesizer. SSIGGRAPH Comput. Graph., 19(3):287—
296.

Perlin, K. (2002). Improving noise. In SIGGRAPH ’02: Proceedings of the 29th
annual conference on Computer graphics and interactive techniques, pages
681-682, New York, NY, USA. ACM.

223

Bibliography

Perlin, K. and Hoffert, E. M. (1989). Hypertexture. SIGGRAPH Comput. Graph.,
23(3):253-262.

Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic

diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(7):629-639.

Pietikdinen, M. (2005). Image analysis with local binary patterns. Image Analysis,
pages 115-118.

Poli, R. (2008). Analysis of the publications on the applications of particle swarm
optimisation. J. Artif. Evol. App., 8(2):1-10.

Press, W. H., Vetterling, W. T., Teukolsky, S. A., and Flannery, B. P. (2002).
Numerical Recipes in C++: the art of scientific computing.

Puig, D. and Garcia, M. A. (2006). Automatic texture feature selection for image
pixel classification. Pattern Recognition, 39(11):1996 — 2009.

Ramos, V. and Almeida, F. (2000). Artificial ant colonies in digital image habitats
- amass behaviour effect study on. In In Dorigo, M., Middendorf, M., Stuzle,
T. (Eds.): From Ant Colonies to Artificial Ants - 2 nd Int. Wkshp on Ant
Algorithms, pages 113-116.

Ramos, V., Fernandes, C., and C.Rosa, A. (2005). Social cognitive maps, swarm
collective perception and distributed search on dynamic landscapes. Brains,
Minds and Media, Journal of New Media in Neural and Cognitive Science,
NRW.

Ray, T. S. (1991). An approach to the synthesis of life. In Langton, C. G., Taylor,
C., Farmer, D. J., and Rasmussen, S., editors, Artificial Life I, pages 371—
408, Redwood City, CA. Addison-Wesley.

Reeve and Gamboa (1983). Colony activity integration in primitively eusocial
wasps: the role of the queen (polistes fuscatus, hymenoptera: Vespidae).
Behavioral Ecology and Sociobiology.

Reeve and Gamboa (1987). Queen regulation of worker foraging in paper wasp:
a social feedback control system (polistes fuscatus, hymenoptera: Vespidae).
Behaviour.

Ren, X. and Malik, J. (2003). Learning a classification model for segmentation.
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference
on, pages 10-17 vol.1.

224

Ren, X. and Malik, J. (2007). Tracking as repeated figure/ground segmentation.
In Proc. IEEE Conf. Comput. Vision and Pattern Recogn.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral
model. Proceedings of the 14th annual conference on Computer graphics
and interactive techniques, pages 25-34.

Ross, K. G. and Matthews, R. W. (1991). The social biology of wasps, chapter
Evolution of nest architecture. Cornell University Press.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach.
Pearson Education.

Sand, P. and Teller, S. (2006). Particle video: Long-range motion estimation using
point trajectories. Computer Vision and Pattern Recognition, 02:2195-2202.

Schmidt, J. and Castrillon, M. (2008). Automatic initialization for body tracking
- using appearance to learn a model for tracking human upper body motions.

3rd International Conference on Computer Vision Theory and Applications
(VISAPP).

Scott-Card, O. (1986). Ender’s Game. Tor Books.

Shapiro, A., Chu, D., Allen, B., and Faloutsos, P. (2007). The dynamic controller
toolkit. In Sandbox ’07: Proceedings of the 2007 ACM SIGGRAPH
symposium on Video games, pages 15-20, New York, NY, USA. ACM.

Shechtman, E. and Irani, M. (2007). Matching local self-similarities across
images and videos. In IEEE Conference on Computer Vision and Pattern
Recognition 2007 (CVPR’07).

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888-905.

Shi, J. and Tomasi, C. (1994). Good features to track. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 593—600.

Shi, Y. and Eberhart, R. (1998). A modified particle swarm optimizer. Proc. IEEE
Int. Conf. on Evolutionary Computation, pages 69—73.

Shim, W. M. and Cavanagh, P. (2004). Attention shift induced by apparent motion
can cause position compression. Journal of Vision, 4(8).

Shotton, J., Blake, A., and Cipolla, R. (2008). Multiscale categorical object
recognition using contour fragments. 30(7):1270-1281.

225

Bibliography

Sims, K. (1994). Evolving 3d morphology and behavior by competition. In
Artificial Life IV Proceedings.

Smith, T. and Guild, J. (1931). The c.i.e. colorimetric standards and their use.
Transactions of the Optical Society.

Takala, V. and Pietikainen, M. (2007). Multi-object tracking using color, texture
and motion. Computer Vision and Pattern Recognition, 2007. CVPR ’07.
IEEE Conference on, pages 1-7.

Tao, Q. and Veldhuis, R. (2007). Illumination normalization based on simplified
local binary patterns for a face verification system. In Proc. of the Biometrics
Symposium, pages 1-6.

Tao, W., Jin, H., and Zhang, Y. (2007). Color image segmentation based on mean
shift and normalized cuts. Systems, Man, and Cybernetics, Part B, IEEE
Transactions on, 37(5):1382—-1389.

Tautz, J. (2008). The Buzz about Bees. Springer, Berlin.

Taylor, T. (1997). The cosmos artificial life system. Technical report, Department
of Artificial Intelligence, University of Edinburgh.

Theraulaz, G., Bonabeau, E., and Deneubourg, J.-L. (1998). The origin of nest
complexity in social insects. Complex., 3(6):15-25.

Theraulaz, G., Bonabeau, E., Nicolis, S. C., Sole, R. V., Fourcassi, V., Blanco, S.,
Fournier, R., Joly, J., Fernandez, P., Grimal, A., Dalle, P., and Deneubourg,
J. L. (2002). Spatial patterns in ant colonies. In Proceeding of the National
Academy of Sciences.

Thomas, M. and Kambhamettu, C. (2006). An approximation to mean-shift via
swarm intelligence. Tools with Artificial Intelligence, 2006. ICTAI *06. 18th
IEEE International Conference on, pages 583-590.

Thorpe, W. H. (1963). Learning and instinct in animals. London:Methuen.

Tola, E., Lepetit, V., and Fua, P. (2008). A fast local descriptor for dense
matching. Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1-8.

Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color
images. In ICCV ’98: Proceedings of the Sixth International Conference on
Computer Vision, page 839, Washington, DC, USA. IEEE Computer Society.

226

Toyama, K., Krumm, J., Brumitt, B., and Meyers, B. (1999). Wallflower:
principles and practice of background maintenance. In Computer Vision,
1999. The Proceedings of the Seventh IEEE International Conference on,
volume 1, pages 255-261 vol.1.

Tuceryan, M. and Jain, A. K. (1993). Texture analysis. World Scientific Publishing
Co., Inc., River Edge, NJ, USA.

Verlet, L. (1967). Computer “experiments’ on classical fluids. i. thermodynamical
properties of lennard-jones molecules. Phys. Rev., 159(1):98.

Viola, P. and Jones, M. (2001). Robust real-time object detection. In International
Journal of Computer Vision.

von Bertalanffy, L. (1975). Perspectives on general system theory : scientific-
philosophical studies. New York : G. Braziller.

White, C., Tagliarini, G., and Narayan, S. (2004). An algorithm for swarm-based

color image segmentation. SoutheastCon, 2004. Proceedings. IEEE, (26-
29):84-89.

Wiskott, L., Fellous, J.-M., Kriiger, N., and von der Malsburg, C. (1999). Face
recognition by elastic bunch graph matching. pages 355-398.

Yan, J. and Pollefeys, M. (2006). Automatic kinematic chain building from
feature trajectories of articulated objects. In CVPR ’06: Proceedings of the
2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 712-719, Washington, DC, USA. IEEE Computer
Society.

Yang, C., Duraiswami, R., and Davis, L. (2005). Fast multiple object tracking via
a hierarchical particle filter. In In: International Conference on Computer
Vision, pages 212-219.

Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: A survey. ACM
Comput. Surv., 38(4).

Yilmaz, A., Li, X., and Shah, M. (2004). Object contour tracking using level sets.
In Asian Conference on Computer Vision, ACCV 2004, Jaju Islands, Korea.

Zhang, X., Hu, W., Maybank, S., Li, X., and Zhu, M. (2008). Sequential
particle swarm optimization for visual tracking. Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8.

227

Bibliography

Zhao, Q. and Tao, H. (2009). A motion observable representation using color
correlogram and its applications to tracking. Compuer Vision and Image
Understanging, 113(2):273-290.

Zheng, Y. and Meng, Y. (2007). The pso-based adaptive window for people
tracking. Computational Intelligence in Security and Defense Applications,
2007. CISDA 2007. IEEE Symposium on, pages 23-29.

Zhou, H., Yuan, Y., and Shi, C. (2008). Object tracking using sift features and
mean shift. Computer Vision and Image Understanding.

Zimmer, C. (2007). From ants to people. The New York Times.

Ziou, D. and Tabbone, S. (1998). Edge detection techniques - an overview.
International Journal of Pattern Recognition and Image Analysis, 8:537—
559.

Zivkovic, Z. (2004). Improved adaptive gaussian mixture model for background
subtraction. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th
International Conference on, 2:28-31 Vol.2.

228

