
UNIVERSIDAD DE LAS PALMAS

DE GRAN CANARIA

Departamento de Informática y Sistemas

TESIS DOCTORAL

CoolBOT: un Marco de Programación Orientado a

Componentes para Robótica

(CoolBOT: a Component-Oriented Programming Framework for Robotics)

Antonio Carlos Domı́nguez Brito

Julio 2003

UNIVERSIDAD DE LAS PALMAS
DE GRAN CANARIA

Departamento de Informática y Sistemas

Tesis Titulada CoolBOT: un Marco de Programación Orientado a Compo-

nentes para Robótica, que presenta D. Antonio Carlos Domı́nguez Brito,

realizada bajo la dirección del Doctor D. Jorge Cabrera Gámez y la codi-

rección del Doctor D. Francisco Mario Hernández Tejera.

Las Palmas de Gran Canaria, Julio de 2003

El director El codirector

Jorge Cabrera Gámez Francisco Mario Hernández Tejera

El doctorando

Antonio Carlos Domı́nguez Brito

A mis padres, Carmen Rosa y Vicente;
a mis hermanos, Vicente Manuel e Inma Pino;

y a mi abuelo, Antonio.

Agradecimientos

Escribir los agradecimientos de un trabajo como el que se presenta en este

documento no es una labor trivial. Uno teme que alguien pueda olvidársele, puesto

que hasta la más pequeña ayuda ha sido valiosa.

Lo primero que he de agradecer es el hecho de haber sido acogido como Becario

de Investigación de la Universidad de Las Palmas de Gran Canaria bajo la dirección

del doctor Francisco Mario Hernández Tejera en el seno de un grupo de investigación

repleto de gente, proyectos e iniciativa.

A lo largo de la realización de una tesis, uno se encuentra muchas veces desori-

entado y perdido, incluso llegando a la duda metódica del ”todo lo hecho está mal”.

Agradezco a mi director de tesis, el doctor Jorge Cabrera Gámez, el haberme sacado

múltiples veces de infinitos atolladeros en los que me empecinaba en permanecer.

También debo agradecer todas sus profundamente argumentadas cŕıticas, no hay nada

que más ayude. Tampoco me olvido de la infinidad de tés sin azúcar que me he tenido

que tomar en su despacho. Eso también lo agradezco.

También, a mi codirector, al doctor Francisco Mario Hernández Tejera tengo

que agradecer su confianza, su promoción constante de nuevas ideas y sus siempre

constructivas cŕıticas. No me olvido tampoco de su incréıble capacidad para contar

historias. Aún recuerdo como nos ilustró acerca de la memoria de los peces con su

imitación de un pez en una pecera. Memorable.

Debo dar también gracias al resto de compañeros del grupo de investigación,

especialmente a Modesto y Daniel por su ayuda en la realización del resumen en español.

No puedo olvidarme aqúı de “mis” usuarios. Gracias Claudio y Jose Luis por

ser las primeras “cobayas” de CoolBOT, además de mi mismo. Espero que pronto

aumente este club.

Esta tesis nunca hubiera sido posible sin la existencia del Programa de Be-

cas de Investigación y de Formación de Profesorado de la Universidad de Las Palmas

de Gran Canaria del cual he sido beneficiario durante 3 años. Por otro lado, este

trabajo también ha sido financiado en parte, a través del proyecto de investigación

con referencia 1FD1997-1580-C02-02 de la Unión Europea y de la Dirección Gen-

eral de Enseñanza Superior, y a través del proyecto de investigación con referencia

PI/1999/153 del Gobierno de Canarias. Es preciso aqúı dar las graćıas a dichas in-

stituciones por el apoyo que dan a la investigación en general, y en particular, por el

apoyo que han brindado a este trabajo.

Finalmente, y para terminar, el más importante de todos los agradecimientos.

Aqúı tengo que dar las gracias a mis padres, el ejemplo, infinito apoyo y confianza que

me han dado en lo que llevo de vida tienen mucho que ver con este trabajo.

Muchas gracias a todos.

Contents

Resumen xiii

Abstract xv

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 3

1.3 Technical Challenges . 4

1.4 Contributions . 5

1.5 Outline of the Document . 7

2 Review of Related Research 9

2.1 Introduction . 9

2.2 Terminology . 10

2.2.1 Programming Languages . 10

2.2.2 Libraries . 11

2.2.3 Frameworks . 11

2.2.4 Architectures . 12

2.2.5 Software Components . 13

2.3 Review of Related Research . 14

2.3.1 Architectures . 15

2.3.1.1 Subsumption . 15

2.3.1.2 AuRA . 16

2.3.1.3 SFX . 17

2.3.1.4 3T . 18

2.3.1.5 DAMN . 20

i

ii CONTENTS

2.3.1.6 Saphira . 22

2.3.1.7 BERRA . 24

2.3.2 Frameworks and Programming Languages 25

2.3.2.1 GenoM . 25

2.3.2.2 ESL . 29

2.3.2.3 TDL . 29

2.3.2.4 SmartSoft . 31

2.3.3 Others . 33

2.3.3.1 Chimera . 33

2.4 Proposed Approach: CoolBOT . 34

2.4.1 Design Principles . 35

2.4.1.1 Component-Oriented 35

2.4.1.2 Component Uniformity 36

2.4.1.3 Robustness . 36

2.4.1.4 Modularity & Hierarchy 37

2.4.1.5 Integrability & Incremental Design 38

2.4.1.6 Distributed . 38

2.4.1.7 Reuse . 38

2.4.1.8 Completeness & Expressiveness 39

2.4.1.9 Operating System Support 39

3 CoolBOT Fundamentals 41

3.1 Introduction . 41

3.2 CoolBOT Components . 42

3.2.1 Port Automata . 42

3.2.1.1 Input Ports, Output Ports, Port Packets and Port Con-
nections . 44

3.2.1.2 Automaton States . 44

3.2.2 Robustness . 45

3.2.2.1 Observability and Controllability 45

3.2.2.2 Component Exceptions 45

3.2.2.3 Port Watchdogs . 46

3.2.3 Timers . 46

3.2.4 Component Priorities . 47

CONTENTS iii

3.3 Component Defaults . 48

3.3.1 Control and Monitoring Ports 49

3.3.2 Default Observable and Controllable Variables 50

3.3.2.1 Component Execution Control Loop 52

3.3.3 The Default Automaton . 53

3.3.4 Default Exceptions . 56

3.3.5 Default Timer . 56

3.3.6 Other Defaults . 56

3.4 Component Nuts and Bolts . 57

3.4.1 Port Threads . 57

3.4.2 The Main Thread . 59

3.4.2.1 The Component Kernel 60

3.4.3 Input Port Priorities . 64

3.5 Inter Component Communications . 64

3.5.1 Basic ICC Mechanisms . 65

3.5.1.1 Active Sending (AS), Active Sending with Copy (ASC)
and Passive Reception (PR) 66

3.5.1.2 Passive Sending (PS) and Active Reception (AR) . . . 70

3.5.1.3 Signal Sending (SS) and Signal Reception (SR) 73

3.5.1.4 Shared ICC Mechanisms 74

3.5.2 Port Connections . 78

3.5.2.1 Tick Connections . 79

3.5.2.2 Last Connections . 80

3.5.2.3 FIFO Connections . 81

3.5.2.4 Unbounded FIFO Connections 82

3.5.2.5 Poster Connections . 82

3.5.2.6 Shared Connections 84

3.5.2.7 Multi Packet Connections 85

3.5.2.8 Lazy Multi Packet Connections 86

3.5.2.9 Priority Connections 87

3.5.2.10 Pull Connections . 88

3.5.2.11 Simple Multi Packet Connections 90

3.6 Component Composition . 91

iv CONTENTS

3.6.1 Atomic Components . 92

3.6.1.1 External Interface: Input and Output Ports 93

3.6.1.2 Port Packets . 98

3.6.1.3 Component Automaton 99

3.6.1.4 Port Threads . 102

3.6.1.5 Exceptions . 104

3.6.2 Compound Components . 107

3.6.2.1 The Supervisor . 110

3.6.2.1.1 Component Topologies: Internal and External
Mapping . 112

3.6.2.2 Exception Handling 114

3.7 Distributed Components . 116

3.7.1 Proxy Components . 116

3.7.1.1 Component Attachment 117

3.7.1.2 Functionality . 119

3.7.2 CoolBOT Servers . 121

3.8 Scopes, Objects and Class Methods . 122

4 Using CoolBOT 125

4.1 Introduction . 125

4.2 Which Port Type should be used? . 126

4.3 A Reactive Example . 132

4.3.1 An Avoiding Component . 134

4.3.2 The Avoiding Level . 140

4.3.3 A Strategic Component . 141

4.3.4 A Wander Component . 148

4.3.5 The Wandering Level . 149

4.4 What about a Task? . 151

4.4.1 A Vision Component . 154

4.4.2 A Go Home Component . 157

4.4.3 The Go Home Task . 161

4.5 A More Formal Approach for Tasks . 162

4.5.1 Sequential Composition . 162

4.5.2 Conditional Composition . 163

CONTENTS v

4.5.3 Parallel Composition . 165

4.5.4 Disabling Composition . 166

4.5.5 Synchronous Recurrent Composition 167

4.5.6 Asynchronous Recurrent Composition 168

4.5.7 Using the Operators . 169

5 Conclusions and Future Work 171

5.1 Introduction . 171

5.2 Final Comments . 171

5.2.1 SmartSoft . 171

5.2.2 GenoM . 173

5.2.3 Orocos . 174

5.3 Conclusions . 175

5.3.1 General Conclusions . 175

5.3.1.1 Uniformity . 175

5.3.1.2 Deployment, Reuse and Recycling of Components . . . 175

5.3.1.3 Visibility . 176

5.3.1.4 Inter Component Communications 176

5.3.1.5 Multithreading . 176

5.3.1.6 A Model for Exception Handling 177

5.3.1.7 Strong Design Requirements 178

5.3.1.8 Generality . 178

5.3.1.9 Asynchronous Model of Execution 178

5.3.1.10 Control vs. Functionality 179

5.3.1.11 Operating System Support 179

5.3.2 Experimental Conclusions . 179

5.3.2.1 Port Connections and ICC Mechanisms 179

5.3.2.2 Incremental Development 180

5.3.2.3 Component Reuse . 180

5.4 Future Work . 180

5.4.1 Development Tools . 180

5.4.2 Support for Real Time Operating Systems 181

5.4.3 Network Support . 181

5.4.4 Component Graphical Interfaces 182

vi CONTENTS

5.4.5 Development of Complex Demonstrators 182

5.4.6 Framework Promotion . 182

5.4.7 CoolBOT as a Long-Term Experimental Tool 182

A CoolBOT Programming Style 185

A.1 Naming . 185

A.1.1 Macros, Enumeration Constants and Constants 185

A.1.2 Other identifiers . 185

A.1.3 Types . 186

A.1.4 Prefixes and Suffixes . 187

A.2 Brace Style . 188

A.3 Indentation . 189

A.4 Other Comments and Remarks . 189

List of Figures

2.1 Using libraries. 11

2.2 Using a framework. 11

2.3 Strict-layered Architecture. 12

2.4 Non-strict-layered Architecture. 12

2.5 A component-oriented framework. 14

2.6 The AuRA architecture. 16

2.7 The SFX architecture. 18

2.8 The 3T architecture. 19

2.9 Components of the DAMN architecture. 21

2.10 Elements of the Saphira architecture. 23

2.11 The BERRA architecture. 25

2.12 Application example based on LAAS architecture. 26

2.13 Internal structure of a generic module in LAAS. 28

2.14 A SmartSoft module. 31

2.15 A typical control loop in Chimera. 34

3.1 Component external view. 43

3.2 Component internal view. 43

3.3 Component priorities. 47

3.4 GNU/Linux component priority mapping. 48

3.5 Windows component priority mapping. 48

3.6 Default ports. 49

3.7 Control and monitoring ports: a typical component control loop. . . . 52

3.8 The Default Automaton. 54

3.9 Simplified C++ kernel code. 57

3.10 Simplified kernel. 57

vii

viii LIST OF FIGURES

3.11 Multiple threads. 58

3.12 Port thread automaton. 59

3.13 Pseudo C++ port thread kernel code. 59

3.14 Component kernel. 61

3.15 ICC mechanism pairs. 66

3.16 Active sending (AS). 67

3.17 Active sending with copy (ASC). 68

3.18 Passive reception (PR). 69

3.19 Passive sending (PS). 70

3.20 Active reception (AR). 71

3.21 Signal Sending (SS). 73

3.22 Signal Reception (SR). 74

3.23 Sender shared writing (SSW). 75

3.24 Receiver shared reading (RSR). 76

3.25 Sender shared reading (SSR). 77

3.26 Receiver shared writing (RSW). 77

3.27 Port connections (n,m ∈ N; n,m ≥1). 78

3.28 Simple multi packet connections (n,m ∈ N; n,m ≥1). 79

3.29 A tick connection. 79

3.30 A last connection. 80

3.31 A fifo connection. 81

3.32 A poster connection. 83

3.33 A shared connection. 84

3.34 A multi packet connection. 85

3.35 A priority connection. 87

3.36 A pull connection. 89

3.37 A simple multi packet connection combining an OMultiPacket and an
ILast. 90

3.38 A simple multi packet connection combining an OGeneric and an IMul-
tiPacket. 91

3.39 Component Pioneer : an atomic component. 92

3.40 Component Pioneer : external interface. 93

3.41 One of our Pioneer robots. 94

3.42 Component Pioneer : input and output ports. 96

LIST OF FIGURES ix

3.43 Component Pioneer : ports instantiation. 97

3.44 Component Pioneer : input port priorities. 97

3.45 Component Pioneer : input port priority mapping. 97

3.46 The PortPacket class. 99

3.47 An example of port packet : the OdometryPacket class. 100

3.48 Component Pioneer : automaton. 101

3.49 Component Pioneer : automaton state declarations. 102

3.50 Component Pioneer : an entry section, an exit section, and a transition. 103

3.51 Component Pioneer : threads identifiers. 104

3.52 Component Pioneer : mapping of output and input ports to port threads. 105

3.53 Component Pioneer : thread masks. 106

3.54 Component Pioneer : exceptions declarations. 106

3.55 Component Pioneer : exception instantiation and an exception handler. 108

3.56 Two atomic components: a and b. 109

3.57 The compound component c, a composition of atomic components: a
and b. 109

3.58 The compound component d: a composition of a compound component,
c, and atomic component, b. 109

3.59 A compound component: the supervisor. 111

3.60 A compound components: a hierarchy of control. 112

3.61 Changing mapping. 114

3.62 Supervising a mapping change. 115

3.63 Proxy components. 117

3.64 Proxy components : the user automaton. 119

3.65 CoolBOT servers. 122

4.1 One producer of data and multiple consumers. 127

4.2 Fifo connections: measurements in GNU/Linux and Windows. Working
period of 100 milliseconds. Measurements in milliseconds. 128

4.3 Poster connections: measurements in GNU/Linux and Windows. Work-
ing period of 100 milliseconds. Measurements in milliseconds. 131

4.4 Shared connections: measurements in GNU/Linux and Windows. Work-
ing period of 100 milliseconds. Measurements in milliseconds. 133

4.5 Component PF Avoiding : external interface. 134

4.6 Component PF Avoiding : repulsive potential field. 137

x LIST OF FIGURES

4.7 Component PF Avoiding : user automaton. 138

4.8 The avoiding level. 141

4.9 Component Strategic PF : external interface. 142

4.10 Component Strategic PF : user automaton. 143

4.11 Component Strategic PF : uniform potential field. 144

4.12 Component Strategic PF : attractive potential field. 145

4.13 Component Strategic PF : docking potential field. 147

4.14 Component Wander : external interface. 149

4.15 Component Wander : user automaton. 149

4.16 The wandering level. 150

4.17 Sensor fission. 152

4.18 Sensor fusion. 152

4.19 Sensor fashion. 152

4.20 The Go Home task: the scenario. 153

4.21 The Go Home task: the homing pattern. 154

4.22 Component Vision Server : external interface. 154

4.23 Component Vision Server : user automaton. 156

4.24 Component Go Home: external interface. 157

4.25 Component Go Home: user automaton. 158

4.26 The Go Home task. 161

4.27 Sequential composition: user automaton. 163

4.28 Conditional composition: user automaton. 164

4.29 Parallel composition: user automaton. 165

4.30 Disabling composition: user automaton. 166

4.31 Synchronous recurrent composition: user automaton. 167

4.32 Asynchronous recurrent composition: user automaton. 168

A.1 Macros and constants codification. 185

A.2 Generic naming of identifiers. 186

A.3 Naming for type identifiers. 187

A.4 Access prefixes and suffixes. 188

A.5 Prefixes for pointers and references. 189

A.6 Brace coding for blocks. 190

A.7 One line blocks. 190

List of Tables

3.1 Default observable variables. 50

3.2 Default controllable variables. 51

3.3 Output port types. 78

3.4 Input port types. 79

3.5 Component Pioneer : public output ports. 94

3.6 Component Pioneer : public input ports. 95

3.7 Component Pioneer : private output ports. 95

3.8 Component Pioneer : private input ports. 98

3.9 Component Pioneer : exceptions. 107

3.10 Scopes, objects and methods. 124

4.1 Component PF Avoiding : public output ports. 135

4.2 Component PF Avoiding : public input ports. 135

4.3 Component PF Avoiding : non default observable variables. 136

4.4 Component PF Avoiding : non default controllable variables. 136

4.5 Component Strategic PF : public output ports. 142

4.6 Component Strategic PF : public input ports. 142

4.7 Component Strategic PF : non default observable variables. 142

4.8 Component Strategic PF : non default controllable variables. 143

4.9 Component Wander : public output ports. 149

4.10 Component Wander : public input ports. 149

4.11 Component Wander : non default observable variables. 150

4.12 Component Wander : non default controllable variables. 150

4.13 Component Vision Server : public output ports. 155

4.14 Component Vision Server : public input ports. 155

4.15 Component Go Home: public output ports. 157

xi

xii LIST OF TABLES

4.16 Component Go Home: public input ports. 158

Resumen

Programar software para sistemas robóticos con el objeto de construir sistemas que

funcionen y se desenvuelvan adecuadamente según sus especificaciones de diseño, con-

tinua siendo una tarea que precisa un importante esfuerzo de desarrollo. Actualmente,

no hay paradigmas de programación claros para este tipo de sistemas, y las técnicas de

programación que son de uso común hoy, no son adecuadas para tratar la complejidad

asociada con ellos. El trabajo presentado en este documento describe una herramien-

ta de programación, un framework o marco, que ha de considerarse como un primer

paso para idear herramientas para manejar esta complejidad. En este framework, el

software que controla un sistema se ve como una red dinámica de unidades de eje-

cución interconectadas a través de caminos de datos. Cada una de estas unidades de

ejecución o componente es un autómata de puertos que proporciona una funcionalidad

dada oculta tras una interfase externa, que especifica qué datos se cosumen y cuáles

se producen. Los componentes, una vez definidos y construidos, se pueden instanciar,

integrar y utilizar en múltiples sistemas. El framewok proporciona la infraestructura

necesaria para dar soporte a este concepto de componentes y la intercomunicación en-

tre ellos mediante caminos de datos (conexiones de puertos) que pueden establecerse y

desestablecerse dinámicamente. Además, y considerando que cuanto más robustos sean

los componentes que conforman un sistema, más robusto será el sistema, el framework

proporciona la infraestructura necesaria para controlar y monitorizar los componentes

que integran un sistema en cualquier momento.

xiii

xiv Resumen

Abstract

Programming software for controlling robotic systems in order to built working systems

that perform adequately according to their design requirements remains being a task

that requires an important development effort. Currently, there are no clear program-

ming paradigms for programming robotic systems, and the programming techniques

which are of common use today are not adequate to deal with the complexity associated

with these systems. The work presented in this document describes a programming

tool, concretely a framework, that must be considered as a first step to devise a tool

for dealing with the complexity present in robotics systems. In this framework the

software that controls a system is viewed as a dynamic network of units of execution

inter-connected by means of data paths. Each one of these units of execution, called

a component, is a port automaton which provides a given functionality, hidden behind

an external interface specifying clearly which data it needs and which data it produces.

Components, once defined and built, may be instantiated, integrated and used as many

times as needed in other systems. The framework provides the infrastructure necessary

to support this concept for components and the inter communication between them by

means of data paths (port connections) which can be established and de-established

dynamically. Moreover, and considering that the more robust components that con-

form a system are, the more robust the system is, the framework provides the necessary

infrastructure to control and monitor the components than integrate a system at any

given instant of time.

xv

xvi Abstract

Chapter 1

Introduction

Building software for robotic systems is a very complex and difficult task. The work
presented in this document is aimed to reduce the effort needed to program this kind
of systems. In this first chapter we will illustrate the problem and the motivations that
have brought us to invest efforts in this work, equally, we will briefly outline which
aspects we consider are its main contributions.

1.1 Introduction

Programming software for controlling robotic systems in order to built working sys-
tems that perform adequately according to their design requirements remains being a
task that requires an important development effort. Intrinsically, robotic systems are
complex because, in general, they share several important sources of complexity that
complicates their programming.

Usually, in this kind of systems, there are involved several and different types of
sensors and effectors, each one with their own features and particularities, and needing
a different APIs (Application Programming Interface) for their programming.

Additionally, even the simplest systems involve multiple computers hosting dif-
ferent operating systems that demand distinct APIs and programming tools, and even
different models of computation (embedded, general-purpose, real-time, etc.). Software
is not always portable between different operating systems, specially if non-general-
purpose operating systems are utilized.

Another source of complexity is the existence of several data links between
the units of computation that conform a robotic system: RS-232 links, USB links,
TCP/IP links, dedicated buses (I2C, CAN, . . .), infrared links, etc. It is normal that
all of them use distinct protocols and APIs, and that impose different bandwidths for
communications.

Concurrency and parallelism between processes and threads running in the same
or different machines constitute another source of problems to which it is necessary to

1

2 Chapter 1. Introduction

put much attention. Here synchronization and the interactions between the units of
execution that conform the system become a specially complex issue.

As to human resources, there is another source of complexity. Typically dur-
ing the process of developing and building robotic systems there are multiple persons
taking part into, usually each one having different roles (control engineers, computer-
vision scientists, artificial-intelligence scientists, etc.), and, each of them possibly using
different programming paradigms and methodologies. Evidently, this problem scales
up when the persons involved work in different laboratories.

Finally, robotic systems are aimed at and devised to carry out complex tasks
with a wide range of requirements: soft and real time constraints, physical resources,
responsiveness, robustness, autonomy, etc. It is not strange that the orchestration of
all this complexity coming from such a variety of sources makes the construction of
this type of systems a challenge.

In spite of the success in different application fields of multiple robotic systems
(robot-assisted surgery, agriculture robots, entertainment robots, autonomous museum
robots, highway autonomous driving, space robotics, active vision systems, etc.), the
problem of dealing with the complexity inherent in programming robotic systems re-
mains. Moreover, this complexity is increasing because there are high demands for
systems having more complex functionalities, performing more complicated tasks and
having more “intelligent” behaviors.

At the present moment, there are no clear programming paradigms for program-
ming robotic systems, and the programming techniques which are of common use today
are not adequate to deal with the complexity associated with these systems. One as-
pect where this complexity clearly comes up is software integration. In a given system
normally it is necessary to integrate a wide variety of software: software dealing with
hardware (sensors, effectors, other hardware), software done by other people, software
which is not very portable because it is specific to a particular operating system or ma-
chine (or both), software done in distinct programming languages, etc. Traditionally
software integration has been an underestimated problem in robotics, and frequently
it is a question to which it is necessary to invest much more effort than considered
initially. Some other authors [Kortenkamp and Schultz, 1999] have identified already
this problem. Nowadays it is not only necessary to develop complex algorithms, but
also to integrate complex systems that really perform adequately to its own capacities.

Software system integration is a task demanding so many resources that only
a few research groups can afford it. It seems evident that fostering cooperation and
code reuse between different research groups would be the more convenient solution,
but in practise, it has been very rare to see research groups “importing” architectures
or systems that has been developed by others. In fact, reuse and recycling of code
across laboratories is difficult and nowadays not very common. It is clear that robotics
needs to develop an experimental methodology that promotes the reproduction and
integration of results and software between different research groups. There are multi-
ple reasons for this situation. In general, the approaches originated by distinct groups
have not been designed to be integrated together, and usually, the software for control

1.2. Motivation 3

robotic systems is not easy-to-use software. Its use and learning is not trivial, and get-
ting to a level of expertise high enough to have productive results takes no little time.
All that drives frequently to develop home-made software fitting the specific necessities
of each group. On the other side, adopting approaches coming from other laboratories
could mean to abandon own ideas. Other authors [Coste-Maniere and Simmons, 2000]
have made already similar considerations identifying the building of software architec-
tures as the way the robotics community has mainly chosen to address the problem. In
fact, multiple research groups are currently working on the construction and definition
of “the software architecture” where everybody could integrate its results. However,
it is not clear that imposing “an architecture” should be the way to follow. In fact,
another authors [Fleury et al., 1997] [Schlegel and Wörz, 1999a] are working on more
generic programming tools like frameworks, which are neutral in terms of control and
system architecture, we think it is in this last group where the work presented in this
document should be situated.

Thus, this thesis describes a programming tool, concretely a framework, that
must be considered as a first step to devise a tool for dealing with the complexity
present in robotics systems, and mainly with software integration. In this framework
the software that controls a system is viewed as a dynamic network of units of execution
inter-connected by means of data paths. Each one of these units of execution is called
a component. Each component has a clear functionality and a well established external
interface specifying which data it needs and which data it produces. Components, once
defined and built, may be instantiated, integrated and used as many times as needed
in other systems. The framework provides the infrastructure necessary to support
this concept for components and the inter-communications between them by means of
data paths which can be established and de-established dynamically. In addition, and
considering that the more robust the components that conform a system are, the more
robust the system is, the framework provides the necessary infrastructure to control
and monitor the components than integrate a system at any given instant of time.

In the remaining sections of this chapter we will present more in detail the
motivations that drove us to develop this work, which technical challenges need to be
faced, our main contributions, and, finally, a brief outline of the rest of the document.

1.2 Motivation

The work presented in this document has been mainly motivated by practi-
cal reasons. We have experienced ourselves that programming robotic systems
is a task of enormous complexity that requires an important development effort
[Hernández-Tejera et al., 1999] [Cabrera et al., 2000]. Specially we have experienced
that, in addition to other problems, an important effort had to be dedicated to
integrate the software that finally will constitute the system. There are no clear
programming paradigms to program robotic systems, neither are there standard
programming tools. In mobile robotics a large research effort has been devoted
to architectures [Kortenkamp and Schultz, 1999] [Coste-Maniere and Simmons, 2000]

4 Chapter 1. Introduction

[Orebäck and Christensen, 2003].

Software integration is not only a problem of robotic systems. In other fields of
computer science, as business software, “de facto” standard tools exist to define deploy-
able units of software identified as software components (e.g., ActiveX from Microsoft
[Chappell, 1996], JavaBeans for Java from Sun Microsystems [Monson-Haefal, 2001]),
and a supplier component software industry even exists. On the contrary, in the robotic
field there are not any established standards to address this problem. We consider this
concept of deployable software components as a key concept to reduce software inte-
gration efforts.

A software component should be something like an electronic component or
chip in electronic industry. It is many years that off-the-shelf chips can be bought
and deployed in other parts of the world. Each component has a clear functionality
and a well established external interface. Furthermore, numerous standard tools exist
to design electronic devices based on the composition, assembly and combination of
these electronic components. A similar panorama would be desirable for robotics. We
consider that a concept of software component analogous to an electronic component
would allow using them as pieces of deployable software. Imagine the software of a
robotic system that were seen as the integration of multiple software components in
the same way that electronic circuits are made from integrating electronic components.

Thus, the construction of a programming tool allowing to program robotic sys-
tems by integrating and composing software components was the main objective of the
work presented here. This programming tool it is a component-oriented framework
called CoolBOT that provides means to define components, to run and connect them
and to monitor and control their operation.

1.3 Technical Challenges

There are several technical challenges that must be faced along the elaboration of a work
like the one presented in this thesis. The first of them is finding an adequate model of
software component. In this model, there should be a clear separation between external
interface and internal functionality. The external interface should only express which
data a component consumes and which data the component produces. In addition,
analogously to electronic components, through this external interface a component
should be able to connect to any other component. As to the internal structure, it
should have their own units of execution (processes or threads).

Evidently, a programming paradigm based on interconnected software compo-
nents needs to pay much attention to the mechanisms that will carry out at last term
inter component communications through the connections established between com-
ponents. A clear technical challenge is to choose which mechanisms would be used to
support a model of communications based on connections between components. Such
mechanisms should be generic enough to allow for any imaginable type of interaction
between components. At the same time they would have to be efficient enough in

1.4. Contributions 5

terms of computational resources to be comparable to the present ad-hoc solutions
(shared memories, message queues, etc.). Furthermore, that components were in same
machine, or in a different one residing in the same computer network, should be indif-
ferent in terms of component integration and interconnection. Therefore, connecting
two components residing in different machines should be as easy as if they were in the
same one.

A question comes naturally out from a solution based on integrating software
components. Is the whole the joining of its parts?, or, in other words, is a system just
the joining of its components?. For us, the answer is no. If we integrate components
we need means to observe and control them in order to obtain systems that we can also
observe and control. Obviously the design and implementation of the infrastructure
necessary to make components and systems able to be observable and controllable is
also a technical challenge.

Finally, constructing a software tool that were generic and complete in order to
be able to build any possible system is evidently another technical challenge.

1.4 Contributions

This document describes a software tool, concretely, a software framework called Cool-
BOT which permits to program robotic systems by integrating software components.
In particular, CoolBOT allows to program robotic systems as if they were networks
of interconnected software components. Software components that have been indepen-
dently developed and built, and that have their own functionalities. When a compo-
nent is integrated in a system taking part into a network of components, it executes
following its internal own flow or flows of execution (threads), so they are independent
entities that act under their own initiative. Additionally, the connections conforming
these networks of components constitute data paths between them forming a topol-
ogy of multiple consumers and producers where those data paths may be dynamically
established and de-established. Moreover, connections may be established between
components residing in the same or different machines over a computer network. De-
velopers do not have to worry about the mechanism of inter-communication between
components, they only have to define the internal functionality of the components, and
which external interface they will offer. It is also possible to define compositions of
components, in such a way that compositions can be also handled as single components.

We think the work presented in this document makes some interesting contri-
butions that we enumerate more in detail as follows:

• Uniformity: The framework defines software components as units of function-
ality having an uniform external interface and an uniform internal structure.
This uniformity makes components externally observable and controllable, and
treatable in an uniform and consistent way. Furthermore, the uniformity the
framework imposes makes them also integrable with others in order to built more
complex systems.

6 Chapter 1. Introduction

• Deployment, Reuse and Recycling: The framework permits to program units
of deployable software that are easily integrable wherever they are needed. This
would allow to reduce integration efforts when programming robotic systems,
since components from other projects, or other labs could be integrated and
reused without much cost.

• Visibility: The framework provides means to externally observe and control the
operation of a component through its external interface, whether individually or
integrated with multiple components. We consider this is a key feature to build
development tools as debuggers and profilers for components and systems.

• Inter Component Communications: The way components interact in Cool-
BOT is carried out through data paths established between components. Data
along these data paths are asynchronously transported by the framework by
means of a set of inter component communications mechanisms that make irrel-
evant for developers to worry about how the data are sent and received. They
only have to indicate the format of those data, and what is sent and received,
even when components do not reside in the same computer.

• Multithreading: Components in CoolBOT are active entities that have their
own flow of execution, so they have internally at least a unit of execution (a
thread), but components might make use of multiple threads if necessary, depend-
ing on their particular functionality and design. The framework allows defining
such threads inside components and modelling its interactions using the same
mechanisms that are used for inter-communicating components, therefore, devel-
opers do not have to worry about synchronization and race conditions between
components and the threads they use internally.

• A Model for Exception Handling: The framework provides a model for ex-
ception handling. CoolBOT promotes an uniform approach to handling faulty
situations, establishing a local level of exception handling inside individual com-
ponents and an external level corresponding to exception originated in a compo-
sition of components.

• Generality: We consider the framework is generic enough not only to fit the
requirements of the robotic systems domain, but also for other computer science
domains like, for instance, multi-agent systems.

• Asynchronous Model of Execution: In general, CoolBOT favors a program-
ming methodology that fosters concurrency and parallelism, asynchronous exe-
cution, asynchronous inter communication and data-flow-driven processing. We
think these are features characteristic of robotic systems. This is a framework
where all these concepts have been integrated and put together.

• Control vs. Functionality: CoolBOT provides means to separate control and
functionality when programming systems. This separation favors independent
development of components, and fosters software integration.

1.5. Outline of the Document 7

• Operating System Support: Currently, the framework is supported in the
two most used operating systems: the Windows family of operating systems
(Windows NT, 98, 2000 and XP), and GNU/Linux. Additionally, although the
framework it is not real-time, it can keep soft real-time requirements, and in fact,
it offers some mechanisms and resources which usually are characteristic of real
time operating systems (timers, watchdogs, etc.)

The work presented in this document constitute a programming tool we think fits
a taxonomy of problems (software integration, distributed computing, multithreading,
inter process communication, synchronization, etc.) that usually should be faced when
programming robotic systems. At last term, it provides with a programming model
of asynchronous communications and computation which constitute in our opinion
fundamental elements in any tool for programming robotic systems.

1.5 Outline of the Document

This document has been organized in five chapters and one appendix:

• Chapter 1: This is this introductory chapter.

• Chapter 2: This chapter presents initially some terminology that will be used
along the rest of the document. Then a review of related research will be given
in order to have a vision of the state-of-art. Finally, a brief introduction of
CoolBOT, and an enumeration of the principles that have driven its design and
implementation will be explained.

• Chapter 3: This is the main chapter were the whole framework will be explained
in detail. From general concepts and abstractions to some implementation deci-
sions.

• Chapter 4: In this chapter, some examples of using CoolBOT will be presented
in order to illustrate some features of the framework we consider significant. At
the same time these examples will be used as a proof-of-concept.

• Chapter 5: This last chapter is a recompilation of the results and conclusions
we think we have achieved with the work presented in this thesis.

• Appendix A: Finally, this is an appendix, commenting the coding rules we
followed when implementing CoolBOT, that can be of interest for anyone willing
a better understanding of CoolBOT’s code.

8 Chapter 1. Introduction

Chapter 2

Review of Related Research

How to programming robotic systems in order to built better and more capable systems
and more easily, is a problem to which has already been dedicated research efforts in
other laboratories and institutions. In this chapter we will present the related research
we consider closer to the work presented in this document. But first some terminology
will be introduced in order to share common terms along the rest of the document.
Finally, a brief outline of the approach we propose is given.

2.1 Introduction

Programming the software that controls robotic systems is not an easy task due to the
diversity of hardware and software typically involved, and the complexity of problems
that it is necessary to solve. This is not a new problem, and consequently, it has
already received attention by other research groups. However, it has been very rare
to see research groups “importing” architectures or systems that has been developed
by others. In fact, reuse and recycling of code across laboratories is difficult and
nowadays not very common. In general, the effort which is necessary to invest to learn
and get enough experience in a solution provided by other laboratory is frequently
considered greater or equal than the effort necessary to design and develop a new
“home-grown” solution. In other cases, the adoption of approaches originated by other
research groups means to abandon own ideas about how the problem should be solved.
As a consequence, it is not strange to find as many approaches of solution as research
groups. Evidently, this diversity of approaches is the result of a domain with is still too
recent and young, and where it is also too costly and difficult to reproduce the results
of other groups.

In this chapter, in section 2.3, we will summarize the approaches adopted by
other research laboratories in order to deal with the complexity inherent in the pro-
gramming of operative and successful robotic systems. But first, in section 2.2, we will
introduce and define some terminology with the aim of establishing a common base of
concepts for the rest of the document. In the last section of the chapter, section 2.4 we

9

10 Chapter 2. Review of Related Research

will give a brief outline of the approach of solution we propose and an enumeration of
the design principles that have driven the development of the work presented in this
thesis.

2.2 Terminology

In the area of programming robotic systems there is a confusing terminology where
many terms overlap. In this document, a programming tool is being presented, in par-
ticular, a software framework, but what is a software framework?. On the other side,
in the domain, the most frequent solutions to reduce the complexity when program-
ming robots are software architectures, but what is a software architecture?. Which
differences, if any, are there between frameworks and architectures?, and how long
do these concepts overlap?. The title of this thesis talks about a component-oriented
programming framework, but what does the term “component-oriented” mean?, and
what is a component?. And above all, what do all these concepts have to do with
robotic systems?. In the rest of this section we will try to answer all these questions by
defining each one of these terms in order to understand what each refers to, at least in
the scope of the work presented in this document. The definitions given for each term
have been mainly inspired by [Szyperski, 1999] and [Gamma et al., 1995].

2.2.1 Programming Languages

A programming language is a set of instructions and objects which allow writing algo-
rithms in terms of these instructions and objects. In a specific programming language,
only the algorithms that it is possible to express in terms of its instructions and objects
are practicable. Thus, if the language is not generic enough, there will be problems
that can not be expressed and solved using that language.

There are programming languages in the whole range of generality and complete-
ness. There are languages quite specific for a domain with a small set of instructions
and objects that allow to express all the problems we can find in this domain of knowl-
edge. On the opposite, there are general languages in terms of which any function can
be computed in the sense of Turing [Turing, 1937].

The utility of programming languages is that if they are generic enough they
allow expressing programs in a higher level of abstraction, so the semantic gap be-
tween the language that machines understand and our language is reduced. But when
programs grow in size and complexity we need constructs to give structure to our pro-
grams, such as functions, modules, classes, name-spaces, etc; what drives us to concepts
like libraries, objects, frameworks, architectures and software components.

Evidently, to define a programming language in a specific domain it is necessary
to acquire enough knowledge about the domain to be able to express any imaginable
problem. If the knowledge is insufficient there will be problems that could not be
solved without redefining the language. On the other side, if the language becomes too

2.2. Terminology 11

generic, it might end up being useless, because other general-purpose languages could
do the same. Some languages have been defined for programming robotic systems
where, to avoid the problem of not making a too-narrow or too-generic language, they
have been defined based on existing programming languages just by adding to them
some new instructions and objects. We will comment some of them in section 2.3.

2.2.2 Libraries

A library is a set of useful and reusable software, usually expressed in a specific pro-
gramming language, which has been designed to provide useful, general-purpose func-
tionality. Thus, for instance in C++, a typical library is a set of predefined classes,
functions and data structures defined normally inside a specific name space which can
be incorporated in an application. The main characteristic of libraries is that they
provide functionality to the programs that use them, but not structure. Figure 2.1
helps to illustrate this idea. When libraries are used the developer usually has to write
the body, the core of the application that makes calls to the different libraries that the
program may use.

U
se

r
C

od
e

Library

Library

Library

Library

Library

Figure 2.1: Using libraries.

Fr
am

ew
or

k

User Code

User Code

User Code

Library

Library

Figure 2.2: Using a framework.

2.2.3 Frameworks

A framework is a set of cooperating and reusable software that constitute a reusable
design and structure for a particular domain of application. They have the same
external aspect than libraries, since, for instance, a C++ framework may also take the
form of a set of predefined classes, functions and data structures inside a specific name
space. But the main difference between libraries and frameworks is that frameworks
provide structure to the software that uses them. Figure 2.2 depicts graphically the
idea.

12 Chapter 2. Review of Related Research

In general, when a framework is used, it imposes the main body of the software
we are developing. It establishes a skeleton for our software that then it is necessary to
fulfill. A framework implies that the user has left some design decisions to framework
implementers, and re-uses their design in the particular aspects the framework models.
The main difference between a framework and a library is that using a framework the
main body of the software under development is given by the framework (the skeleton),
and the code we add to fulfill the skeleton and complete the application gets called
by the framework at runtime. Just the opposite of using libraries where we establish
our software main body and libraries get called from our code. It is frequent that
frameworks define the control flow of the software where they are used, and usually
the user code must follow particular conventions and naming schemes to integrate its
code into the framework.

Frameworks allow to give some structure to programs without compromising
generality too much. Making a framework constitutes an approach frequently taken
when there is not enough knowledge to define a programming language in a specific
domain. As it will be commented in the next section, section 2.3, some frameworks
have been designed aimed specially to robotic systems, and, in fact, it is the approach
we have taken in the work presented in this document.

2.2.4 Architectures

An architecture could be seen as a set of cooperating and reusable software which
provides design and structure at different abstraction levels for a particular domain of
software. Like frameworks, architectures also provides structure to the software where
they are used. The difference between architectures and frameworks may be to a certain
extent a bit blurred and fuzzy. In this document the concept of architecture presented in
[Szyperski, 1999] has been adopted. Architectures provides software structural design
at several layers of abstraction.

Hardware

Layer 3

Layer 2

Layer 1

Operating System

Figure 2.3: Strict-layered
Architecture.

Hardware

Layer 3

Operating System

Layer 1

Layer 2

Figure 2.4: Non-strict-layered
Architecture.

Architectures are usually classified in strict-layered architectures and non-strict-
layered architectures. In strict-layered architectures a layer can only base its function-
ality on the operations and primitives offered by the layer immediately below. In turn,

2.2. Terminology 13

it offers the operations and primitives with which the layer immediately above imple-
ments its own functionality. Figure 2.3 depicts a typical strict-layered architecture. In
non-strict-layered architectures layers can also base its functionality on the operations
and primitives in any of the layers below, not only strictly in the one immediately
below, figure 2.4 shows an example.

Usually each layer in a software architecture constitutes the backbone of a soft-
ware structure to which the user adds his/her code. The design of the software ar-
chitecture guarantees the mechanisms of interaction between the objects or elements
residing at different layers. Software architectures may be even more complex than
that, some of them require the utilization of several programming languages, libraries
and frameworks, or any other possible combination of them.

Frequently, a framework provides a specific infrastructure under which software
architectures may be implemented. Thus, in general, software architectures are more
stringent than frameworks, because they provide a more compromising and closer soft-
ware design. Given an architecture designed and implemented for a specific domain, if
there are systems in this domain that do not fit with the structural design established
by the architecture, this one should be modified. Thus, like programming languages,
architectures can be quite specific or generic, depending on the range of systems that
match with the structural design they express.

There has been done a lot of work in software architectures aimed to robotic
systems. A large research effort has been devoted to hybrid architectures [Arkin, 1998]
[Kortenkamp et al., 1998] for autonomous mobile robots which are usually organized in
three layers: the bottom or reactive layer, the intermediate or task control layer and the
top or deliberative layer. The reactive layer is the closest to the hardware, so it deals
directly with sensors and actuators, and tries to embody system behaviors. Typically,
the behaviors correspond to software modules or a sort of combination of them. The
second layer is a sequencer of behaviors in the lowest layer. The task execution layer
is in charge of initiating, combining, and monitoring behaviors to achieve tasks defined
in terms of reactive layer behaviors. The last layer, the deliberative one, is usually
responsible for long-term deliberative planning, where plans are defined in terms of
task carried out by the second layer. We will show several of them in section 2.3. As
we will see, most of them constitute non-strict-layered architectures.

2.2.5 Software Components

The framework we present in this document is a “component-oriented” programming
framework, but what is a component?. The concept of software components is not
something sharp and clear, just the opposite, fuzzy and blurred. Out of the multiple
definitions for software components we can find (chapter 11 in [Szyperski, 1999] is a
good summary) we have chosen the following definition given in [Szyperski, 1999] (page
164):

“A software component is a unit of composition with contractually specified

14 Chapter 2. Review of Related Research

interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third par-
ties.”

Thus, a software component is a piece of software

Fr
am

ew
or

k

Compo-

Compo-

Compo-

Compo-

Compo-

nent

nent

nent

nent

nent

Figure 2.5: A
component-oriented

framework.

that has been independently developed from where it is
going to be used. It should offer a well-defined external
interface that hides its internals, and it is independent of
context until instantiation time. In addition, it can be
deployed without modifications by third parties. Also,
it needs to come with a clear specification of what it re-
quires and provides in order to be able to be composed
with other components. Deployment can be referred to
as binary deployment and source-code deployment. An
example of binary deployment is a binary program for
a specific operating system. Another example is a java
applet in byte codes. Both of them can be run directly
without modifications. Binary deployment is specially
used for proprietary software. For us, source-code de-
ployment is referred when a piece of code can be added
to other software at source code level without needing

further modifications. Source-code deployment is more usual for open-source software.

All in all, a software component is characterized by the following features: un-
coupling of external interface and internal implementation details, context-free design,
ability to be subject to composition and integration with other components (integrabil-
ity), and deployment (whether binary or source-code). Having these features, software
components become deployable pieces of software that can be reused wherever needed.

The work presented in this document is considered a component-oriented frame-
work because it allows designing systems in terms of composition and integration of
software components. This framework provides means to design and built components
and to compose and integrate them hierarchically and dynamically. Furthermore, it
makes components share a minimal internal structure and a minimal external interface.
The concept of a component-oriented framework is illustrated in figure 2.5.

2.3 Review of Related Research

Programming software for robotic systems is not a new problem. Multiple research
groups have approached to the problem on their own way forging their solutions based
on their own ideas and philosophy, know-how in the field, and experience and skillness
with a determined set of programming tools. In this section we comment some of the
approaches taken in other laboratories that we consider more significant or represen-
tative of the state-of-art in the field. We have classified them into three main groups:
architectures, frameworks and programming languages, and others.

2.3. Review of Related Research 15

2.3.1 Architectures

The validation of different architectures originated by different groups is very difficult
and costly. The same is true for transferring results between research groups. The
main reason for this is that, in general, they have not been designed to be integrated
together. In general, architectures for robotic systems are not easy-to-use software,
their use and learning is not trivial, and getting to a level of expertise high enough to
have productive results takes no little time. As a consequence, few studies comparing
architectures quantitatively have been carried out with the significant exception of the
work presented in [Orebäck and Christensen, 2003] which is an evaluation of three ar-
chitectures for mobile robotics (Saphira [Konolige et al., 1997], TeamBots [Balch, 2000]
and BERRA [Orebäck et al., 2000]) where a test problem was used for comparison.

A great research effort in the area of mobile robotics has established solid
grounds for the combination of reactive and deliberative mechanisms (the hybrid de-
liberative/reactive paradigm [Arkin, 1998] [Murphy, 2000] [Kortenkamp et al., 1998])
to be widely considered as the best structural design to built control software for mo-
bile robots. Although the ideas behind this paradigm are not only exclusive of mobile
robotics, it is in this area where there has been a blossoming of multiple architectures
that collectively are called hybrid architectures [Arkin, 1998] [Murphy, 2000]. The fol-
lowing paragraphs are devoted to the presentation of the architectures, most of them
hybrid, that have been more influential or are more closely related to the work presented
in this document.

2.3.1.1 Subsumption

This reactive architecture was proposed by Brooks [Brooks, 1986] and focuses on the
reduction of system response times. The main idea is the building of robotic sys-
tems from the combination of basic perception/action behaviors. Some characteristic
features include the followings:

• Use of behaviors as basic building blocks.

• Avoid as far as possible the utilization of world models that, in any case, should
be restricted to a local scope.

• Take inspiration from biology.

The subsumption architecture makes use of supression/inhibition as coor-
dination mechanisms for active behaviors. The user-defined hierarchy determines
which competing behavior takes control on shared actuators. Pirjanian’s work
[Pirjanian, 1998] include an extensive analysis of alternative schemas for behavior fu-
sion and action selection.

Purely reactive systems have proven their efficiency on multiple applications.
However, they shown also some drawbacks [Tsotsos, 1995], being the most relevant:

16 Chapter 2. Review of Related Research

• Sensibility: The objective of shortening response times can degrade stability if
not managed properly. Simple noisy sensor readings could provoke undesirable
effects on system performance.

• Scalability: The lack of modularity and mechanism to manage complexity make
difficult to cope with problems of larger dimensions.

2.3.1.2 AuRA

The AuRA (Autonomous Robot Architecture) is a proposal by Ronald Arkin
[Arkin and Balch, 1997]. It is a two-level hybrid architecture specially oriented to exe-
cute navigation tasks. AuRA implements ideas extracted from the study of biological
systems and neurophysiology in robotic systems. It has been used in the construction
of different robot applications in navigation, exploration and manipulation.

AuRA’s structure comprises several components organized in two levels: a hi-
erarchical deliberative component in the upper level and a reactive component in the
lower level. The deliberative component, in turn, contains a mission planner, a spatial
reasoner module and a plan sequencer. Linked to this level, the reactive component is
designed as a motor schema controller.

Figure 2.6: The AuRA architecture.

Inside the deliberative part, the mission planner generates high level goals and
restrictions for system operation. The spatial reasoner module uses cartographic infor-
mation to determine the appropriate sequence of trajectory segments the robot must

2.3. Review of Related Research 17

follow to complete it’s mission. Finally, the sequencer translates each trajectory seg-
ment into a set of motor behaviors and demands their execution to the lower level.

At the reactive level, the schema controller monitors and controls at runtime the
evolution of low-level behaviors. Each behavior or motor schema [Arkin, 1989] produces
as output a response vector that is combined with the rest of motor schema’s outputs
to obtain the command for the physical robot. All behaviors operate asynchronously.

Once the reactive level’s actions have been commanded, the deliberative level
enters an idle state, waiting for either a successful task completion or an error signal.
Errors are managed on an hierarchical sequence that begins in the sequencer and ends
in the planner, if all lower levels fail to recover the system from the error situation.

The architecture is claimed to be highly modular. This aspect has been verified
with the essay of different architecture configurations, changing the internal implemen-
tation of each level. Several adaptation and learning mechanisms have been incorpo-
rated to AuRA. Some examples are homeostatic control [Arkin, 1992], dynamic adapta-
tion for behaviors using rule-based mechanisms [Clark et al., 1992], case-based reason-
ing for controlling behavior switching on environmental variations [Ram et al., 1992],
or genetic algorithms for control loop tuning [Ram et al., 1994].

2.3.1.3 SFX

SFX (Sensor Fusion Effects) [Murphy, 2000] started out as an extension to AuRA, ini-
tially centered on sensor fusion and sensor error handling. This architecture comprises
two levels, deliberative and reactive, inspired on biological cognitive models. A graphic
scheme of SFX appears in figure 2.7. The sensor information is preprocessed locally
before transmitted to both system layers for further analysis.

The deliberative component is divided into modules, each one implemented as
a software agent interacting with the others. There is a supervisor agent, called the
Mission Planner, that establishes the high level interface with the user and controls the
evolution of the system. Below, three resource managers take care of sensor and effec-
tor allocation: the Task Manager, the Sensor Manager, and the Effector Manager. The
Sensor Manager is of particular interest, as it contains specific strategies for evaluating
sensor performance and solving problems. Other agents included in the deliberative
level are a Cartographer and several performance monitors. The Cartographer is re-
sponsible for map making and path planning.

The reactive level subdivides in turn into two layers of strategic and tactical
behaviors. The strategic behaviors represent the long term vision, trying to lead the
system towards high level objectives. The tactical behaviors, on the contrary, face tran-
sitory situations, modifying the strategic outputs to overcome particular problems. In
absence of contingencies, strategic indications prevail. An example of this organization
is the navigation to goal (strategic) combined with obstacle avoidance (tactical).

SFX reactive control is similar to subsumption, but here the lower level tactical
behaviors take control overriding commands from higher level behaviors. SFX has been

18 Chapter 2. Review of Related Research

Figure 2.7: The SFX architecture.

used on diverse robotic applications, ranging from indoor office navigation to outdoor
road following and rescue missions.

2.3.1.4 3T

The 3T architecture (“3 Tiers”) results from the cooperation of several researchers
like Peter Bonasso, James Firby, Erann Gat or David Kortenkamp. Closely related
to this work are other architectures such as AAA [Firby et al., 1995] or ATLANTIS
[Gat, 1992].

The main goal of 3T is reaching a robust behavior in task execution by means
of combining reactivity and deliberation. The project also comprises the develop-
ment of several software tools to support programmers in the design of robotic ap-
plications. 3T has been utilized in a great variety of environment and applications
[Bonasso et al., 1997], including people location and recognition, trash collection, of-

2.3. Review of Related Research 19

fice context navigation and manipulator simulation.

The 3T architecture is organized in three levels or layers as depicted in figure
2.8: a reactive level of skills or capacities (the reactive layer), a sequencer (the task-
sequencing layer), and a planner (the deliberative layer).

Figure 2.8: The 3T architecture.

The planner synthesizes all system goals in a list of tasks to perform. These,
in turn, are decomposed in one or more sets of actions or RAPs (Reactive Action
Packages) [Firby, 1989], that are scheduled for execution in the planner. The sequencer
receives the active RAPs and controls their execution, by means of the selection of the
required skills at the reactive level. Simultaneously, a set of event monitors get activated
for notification to the sequencer when triggered. The sequencer modifies the task set
composition in response to events, temporal violations or new high-level planning.

The capacities level integrates a set of environment dependant control actions
(situated skills) that have been obtained systematically to avoid results conditioned by
a particular robot or application context. This leads to a uniform representation for
skills that eases their manipulation, including the following elements:

• Input and output specification.

• Initialization code and processing algorithm.

• Activation function and de-activation function.

Skills are controlled by means of a skill manager that establishes a uniform
interface with the sequencer. Two types of signals are sent through this interface:
commands directed to skills and events to be notified to the sequencer. The purpose is
to hide low-level skill coordination details to the programmer, that can then concentrate
development efforts on tasks.

The sequencing is carried out by the RAPs interpreter. This element uses a RAP
library indexed by situation parameters that maps on different skills configurations.

20 Chapter 2. Review of Related Research

The events constitute a special type of capacity, devoted to signalize the sequencer
on the detection of circumstances relevant to the activity progress (task finalization,
environment change, etc).

Above the sequencing/reaction pair, the planner adds global perspective to the
system. It benefits, however, from the abstraction provided by the lower levels that
contribute to reduce problem’s dimensions. An important condition imposed on 3T to
achieve the pursued objectives is to have the three defined levels operating concurrently
in an asynchronous way.

A main issue in this architecture refers to the appropriate location of a given
activity into the system. The analysis of four characteristics is proposed for this ques-
tion:

• Operation period: Typical periods utilized in the different levels are millisec-
onds for the reactive level, tenth of second for the sequencer and ranging from
seconds to tens of seconds for the planner.

• Bandwidth: Low-level skills can process high data volumes, while inter-level
communications demand a very low bandwidth.

• Functionality: If an activity at a certain level implements mechanisms already
included in the architecture it should be redesigned to allow default mechanisms
to act (e. g. skills that perform action selection or RAPs that manage resources).

• Flexibility: Skills use to be already compiled and cannot be modified at runtime.
Sequencing and planning, on the contrary, can be modified as they are based on
interpreters.

The 3T architecture gives support for adaptive execution allowing several solving
methods to be declared for each task. Each method has associated a set of applicability
conditions that must be considered for its selection. In addition, each task includes a
satisfaction test to determine when the task has completed successfully.

2.3.1.5 DAMN

DAMN (Distributed Architecture for Mobile Navigation) is a distributed architecture
due to Julio Rosenblatt [Rosenblatt, 1995]. It is based on the execution of multiple
behaviors that access to robot control through a voting mechanism. The objective is to
integrate reactive mechanisms with deliberative components without having to impose
a hierarchical structure.

This proposal has been utilized in different applications of operative robots
that include path tracking, off-road navigation and remote-operation, combined with
obstacles avoidance [Langer et al., 1994].

The DAMN architecture [Rosenblatt, 1995] comprises the following elements:

2.3. Review of Related Research 21

• The DAMN Arbiter, the control voting system.

• The behaviors.

• An operation mode controller.

• A vehicle controller.

Figure 2.9 shows the interconnections between the different components of the
architecture.

Figure 2.9: Components of the DAMN architecture.

The different behaviors, with independence of its level of competence, carry out
negative and positive votes in the space of commands (turn, velocity, area of vision,
etc.). The voting manager takes charge of fusing the results to elect the most voted
option. This selection is the result of different processes that include the combination
of the outcomes (weighted by the operation mode controller), filtering and interpola-
tion. The operation is similar to the architecture of suppression, though here internal
representations of the world can be employed.

In this architecture the behaviors are grouped in three levels of competence:

• Security.

– Dynamics of the vehicle: Turn and velocity limits.

– Obstacle Avoidance: Evaluation of collision in possible paths.

– Auxiliary behaviors: Default movements and inertia.

• Action.

– Monitoring of path.

– Off-road.

– Remote-operation.

• Objective.

22 Chapter 2. Review of Related Research

– Sub-objectives.

– Gradient fields.

– Path planning.

The DAMN’s design permits to combine behaviors using different operation
frequencies, as in the case of reactive versus deliberative behaviors. The fusion of
the commands generated determines the behavior of the system, so that the actions
produced by modules with a greater weight are the ones that exercise more influence.
Even so, higher level operation mechanisms can be employed to control the weights
assignment, giving rise to a level of meta-control.

The adaptive execution in DAMN is based on the dynamic modification of the
weights assigned to each behavior. It is also on this point where it is possible to
introduce learning in the system, so that an adequate configuration of weights can be
registered for its subsequent utilization in similar situations.

2.3.1.6 Saphira

In Saphira, three are the fundamental objectives considered for an autonomous
mobile agent: robust task execution, people tracking and map construction
[Konolige et al., 1997]. For accomplishing with these objectives, an architecture should
incorporate three basic characteristics: coordination, coherence and communication.
Saphira takes these premises to constitute an architecture utilized in the imple-
mentation of tracking applications, navigation and interaction with mobile robots
[Guzzoni et al., 1997].

A layered architecture is proposed and built around an internal mechanism of
representation, the local perceptual space or LPS. There is a perception part responsible
for transferring sensor data to LPS and extracting information from them, and an
action part on which different behaviors are executed. Several behavior types coexist:
reactive at lower level, goal directed at intermediate, and task oriented at higher level.
Figure 2.10 presents the different elements that integrate this proposal.

The architecture is conceived to establish a client/server relation with a robotic
entity (the robot server). This vision improves the transportability, isolating the system
from hardware particularities.

The control in Saphira is based on behaviors. The low-level reactive behaviors
are defined and coordinated employing fuzzy logic [Saffiotti et al., 1997]. They are
defined by means of a set of fuzzy rules and an updating function for a set of fuzzy
variables.

The action is selected for each control channel (activity variable) averaging the
different values of action obtained from the rules that conclude on that channel. The
weighting function takes into account for each behavior a fixed priority value and a
variable context of application. This context-dependant mechanism of coordination is
employed both for reactive and goal oriented behaviors.

2.3. Review of Related Research 23

Figure 2.10: Elements of the Saphira architecture.

The coherence of the system relies on keeping updated some object descriptors
of the environment, called artifacts, on the LPS. To accomplish this, characteristics and
hypothesis of objects are generated, applying bottom up processing for symbolization
of artifacts, and top down processing for verification of hypotheses. An example is
the construction of a map of the environment extracting lineal characteristics from
readings of ultrasonic sensors, which are combined with depth information to produce
objects hypothesis like corridor, wall or door. The objects are compared with the list
of artifacts for its updating, in case of coincidence, or extension, when a new object is
detected. This process is called anchoring [Coradeschi and Saffiotti, 2003].

The selection and coordination of behaviors is performed by the PRS-Lite con-
troller (Procedural Reasoning System). Some characteristics of this controller are the
capacity of integrating goal and event directed tasks, reactivity, or hierarchical task
decomposition. Additionally this module incorporates capacities such as the man-
agement of the continuous interaction processes, an extensive assembly of declarative
control mechanisms, or the use of satisfaction levels as output after the execution of a
task instead of success/failure notification.

24 Chapter 2. Review of Related Research

PRS-Lite is based on the utilization of activity schema, that are defined as
ordered sets of goals, integrated in turn by simple goals. A goal can belong to two
basic categories: action or sequencing. The typical actions include test, assignment,
execution, wait for condition or expansion/contraction. This last type permits the
hierarchical expansion, giving rise to tree structures. The sequencing goals include
jumps, branching and parallelization.

The operation of the system relies on the intentions objects, corresponding to
the hierarchy of activity plans launched. Inside them, leaf nodes constitute the present
assemblies of goals, and are selected for execution on each system cycle.

2.3.1.7 BERRA

BERRA (BEhavior based Robot Research Architecture) [Orebäck et al., 2000], is an
architecture aimed at achieving scalability and flexibility as primary objectives. It is
based on software components implemented as processes that can be transparently
placed on a processing network. The implemented system makes use of the ACE
(Adaptive Communication Environment) [Schmidt, 1994] library as supporting com-
munication layer. ACE includes powerful patterns for client/server communication
and service functions. OS dependent system calls are wrapped, allowing for portability
across a wide range of operating systems.

The proposed architecture is structured in three layers: the deliberation layer,
the task execution layer, and the reactive layer. The deliberate layer makes high level
decision, derived from robot objectives or user orders, according to system state. The
reactive layer integrates low level modules interconnected in a flexible network. The
intermediate mission or task execution layer carries out the plans generated by the
deliberative layer through the configuration of the reactive network to solve the task
at hand.

The deliberative layer internal structure consist of a planner and a human robot
interface (HRI). The HRI applies gesture and speech recognition to capture user com-
mands that are then sent to the planner. The task execution layer contains two mod-
ules: a state manager and a localizer. The state manager is a finite state automaton
in charge of module configuration at the reactive level, while the localizer retrieves
and distributes position data. The reactive layer consists of a large set of modules
that can be interconnected to configure a network of tight sensorimotor loops. The
modules at this level are of three types: resources, behaviors and controllers. The
resources capture data from sensors and serve them to behaviors (e.g. GoPoint, Avoid,
Explore, MailDocking, DoorTraverse) for analysis. The behaviors’s outputs are con-
trol propositions that controllers fuse to produce the final command to be executed
by physical effectors. On figure 2.11, a schematic view of this architecture is depicted.
The implemented system has been tested in a significant number of laboratory missions
[Andersson et al., 1999].

2.3. Review of Related Research 25

Figure 2.11: The BERRA architecture.

2.3.2 Frameworks and Programming Languages

In addition to architectures some software frameworks have been also created by dif-
ferent research groups following different motivations. In some cases, the frameworks
were created to support a specific level of abstraction for implementing a more com-
plex software architecture. This is the case of GenoM developed at LAAS (Laboratoire
d’Analyse et d’Architecture des Systèmes), one of the frameworks we will comment
next. GenoM was developed to support the creation of the software architectures that
control the set of robots used at that laboratory.

Other research groups have taken the approach of developing programming lan-
guages. In general, these languages are supersets of existent general-purpose program-
ming languages to which operations and constructs to model concurrency, parallelism
and task control have been added. Some of them also include abstractions to model
inter process communications.

2.3.2.1 GenoM

This proposal was originated at the CNRS-LAAS (Laboratoire d’Analyse et d’Architec-
ture des Systèmes) in Toulouse, carried out by Sara Fleury, Rachid Alami, Raja Chatila
and Felix Ingrand, among others [Alami et al., 1998]. The basic objective is the inte-
gration of real-time modules in a robotic system, using a hybrid architecture. This
imposes a series of requirements on robot functionality in order to attain a distributed
real-time system that exhibits high predictability and scalability.

This framework, also known as GenoM (Generation of Modules), has been es-
sayed both at simulation level and on physical robots, mainly in coordination missions

26 Chapter 2. Review of Related Research

[Alami et al., 1995]. The architecture defines three different levels: a functional level,
an execution level, and a decision level. Figure 2.12 shows the structure of a low-level
application example combining tracking with obstacle avoidance.

Figure 2.12: Application example based on LAAS architecture.

The functional level contains all the basic capacities for perception and ac-
tion. These functions are encapsulated in inter-communicated controllable modules
[Fleury et al., 1997] [Fleury and Herrb, 1998] that are linked to the physical level
through an abstraction layer, the logical robot level. The purpose of this interme-
diate layer is to make the development independent from the physical robot available.

The executive level acts as interface between the functional and the decision
level. It is a level with no planning capacity, that receives the action sequences from
the decision level and translates them into dynamic control orders directed to the
functional level. The executive level is structured internally in three main components:

• Request monitor: Receives requests from the decision level and uses the request
database to map them into a set of modules to be activated.

• Answer monitor: Supervises the evolution of the execution in the functional
level to notify detected events to the decision level.

• Execution state database: Contains rules to solve conflicts as a function of
the information provided by the monitors.

The code used at the execution level is critical in the operation of the whole
system and must be formally verified to guarantee its logical and temporal correctness.

2.3. Review of Related Research 27

Above the functional level, the system has a decision level in charge of interpret-
ing the robot mission decomposing it into requests to the lower level. This level must
be reactive and manages the sharing of resources among the applications. To ensure
reactivity, the decision level is constituted by two entities: a planner and a supervisor.
The planner generates the sequence of actions needed to fulfill a given objective, and
it is used as a resource by the supervisor, who is responsible for the interaction with
the lower level, the control of the plan execution and the reaction to events. Besides,
the supervisor acts as user interface.

The supervisor makes use of two additional elements during plan execution:
the execution modalities, to limit the searching space for planning, and a database of
situation-driven procedures. The deliberation algorithms executed by the supervisor
must have reduced execution times, in order to avoid an excessive control loop delay.

The decision level can be organized internally in multiple layers, depending on
the application. All layers, however, adopt the same internal structure of planner/su-
pervisor.

The typical operation cycles for the three levels are hundredths of a second for
the functional level, tenths for the executive one and seconds for the decision level.
Several tools are offered to verify the system performance, including an interactive test
program, a computing time estimator and a chronogram generator.

LAAS architecture is conceived around the generic module concept depicted in
figure 2.13. A module is defined as a software entity that offers services relative to a
given resource. The services are attended on a client/server protocol basis, returning
the result of the execution and a measure of its quality. The modules receive execu-
tion requests to begin a certain processing activity and control requests to modify its
behavior. Relations between modules are established dynamically.

Data are interchanged among modules by means of posters, which are shared
memory areas writable only from the owner and accessible from the rest of modules.
Besides this functional posters, there are control posters that reflect the status of each
module.

The execution state of the system is represented by means of an activity tree,
that reflects a hierarchical decomposition formed by the launching of child activities
from a parent activity. The activities to be integrated must be interruptible, and sup-
port controlled finalization and error detection. To facilitate this, the generic module
structure contains the following elements:

• Control level: In charge of module management, this level receives the clients’s
requests, verifies them, solves potential conflicts, initialize and finalize activities,
and returns answers back to the clients. It is also responsible for keeping the
internal state representation of the module which is exported through the control
posters.

• Executive level: Executes the activities demanded from the control level. This
level contains one or more execution tasks, either periodic or not, that constitute

28 Chapter 2. Review of Related Research

Figure 2.13: Internal structure of a generic module in LAAS.

the execution context for one or more activities.

• Inter-level communication: The exchange of information between levels takes
place by means of two databases: a functional database and a control database.

An execution request maps to an activity that evolves following a state control
graph, transiting on signals either from the control or the execution levels. Five are
the possible states for an activity: “ETHER”, “INIT”, “EXEC”, “ZOMBIE” y “IN-
TER”. The valid transitions for those states are “init”, “exec”, “failed”, “abort” y
“ended”. The “EXEC” state decomposes into execution steps, named codels, that can
be considered atomic from the module point of view. Usually, there are an initialization
step (“start”), an iterative step for execution progress (“exec”), another for finalization
(“end”), and finally a step for error conditions (“fail”).

The modules are generated automatically from a formal description. This de-
scription includes items such as module identification, used data types, valid requests
and associated elements (request type, input and output parameters, execution re-
port code, detail of execution steps), the posters, the execution parameters (period,
priority), etc.

The mechanisms of adaptation are based on the internal structure of the mod-
ules. These can incorporate error processing procedures in execution time that include
strategies for recovery or notification of failures to clients.

2.3. Review of Related Research 29

2.3.2.2 ESL

ESL (Execution Support Language) is a language proposed by E. Gat [Gat, 1997] to
codify execution-related knowledge in autonomous agents. It derives to a great extent
from the RAP system [Firby, 1989], although with a more practical focus, oriented to
flexibility and comfort of use. ESL is implemented as an extension of Common Lisp.

ESL incorporates constructions, among others, to implement the following char-
acteristics:

• Exception management: Making use of the concept of conscious failure, that
express the convenience that, since is not possible to build a system that do
not fail under any circumstance, at least the failure situation should always
be detectable. Some available constructions are FAIL, WITH-RECOVERY-
PROCEDURES and WITH-CLEANUP-PROCEDURES.

• Goal specification: Permits to register methods to achieve different goals by
means of the constructions ACHIEVE and TO ACHIEVE.

• Task management: ESL supports the concurrent execution of multiple
tasks. It is possible, for example, to specify groups of tasks (TASK NET),
synchronize the execution through events (WAIT-FOR-EVENTS, SIGNAL,
CHECKPOINT-WAIT, CHECKPOINT), and indicate conditions of failure
(WITH GUARDIAN).

• Data base: Instructions for management of a logical base, as are ASSERT,
RETRACT or WITH-QUERY-BINDINGS.

• Blocking mechanisms: To avoid inconsistences in the management of shared
variables.

2.3.2.3 TDL

TDL (Task Description Language) [Simmons and Apfelbaum, 1998] is a language de-
signed to simplify the development of control programs for robots. It includes specific
backup for the implementation of control at task level. TDL has been developed as an
extension of C++, implemented on top of a communication library called TCM (Task
Control Management).

This language incorporates the following characteristics: tasks decomposition,
monitoring of execution, synchronization., and exception management.

TDL derives from TCA (Task Control Architecture) [Simmons, 1992], a pro-
posal that combines task level control with inter-process communication using message
passing.

The basic representation utilized in TDL are task trees, where nodes are asso-
ciated to specific actions whose execution result can either be success or failure. Task
tree nodes may belong to the following types:

30 Chapter 2. Review of Related Research

• Command: Constitute executable behaviors, and are located normally in the
leaves of the task tree.

• Goal: These nodes represent high-level tasks, and their activation expands the
tree in new child nodes that, in turn, can be goals or commands.

• Monitor: It is a node whose action can be invoked repeatedly on the detection
of a specific event.

• Exception: Node associated to a specific type of failure, provoking either the
activation of recovery procedures or a simple notification.

From the point of view of its manipulation, a node of the task tree can be in
one of the following states: “disabled”, “enabled”, “active” or “completed”. A node is
disabled when the corresponding synchronization restrictions are not verified. When
these conditions are met, the node is enabled and waiting for the capture of its execution
resources. If this it is the case, the node becomes active until the execution finalizes,
transiting to the “completed” state.

There are two types of restrictions: authorization and finalization. These re-
strictions indicate that a specific node, on the presence of a certain event, can initiate
its execution (authorization) or finalize (finalization).

Here are included some examples of code:

1. Expansion and synchronization:
t1 : spawn a (1) ; t2 : spawn a (2) ; spawn b (3) with

d i s ab l e u n t i l t1 execut ion completed ,
d i s ab l e expansion un t i l t2 handl ing a c t i v e ;

2. Exceptions:
Goal navigateToLocn (double x , double y)
{

with except ion
(” Overheating ” : handleOverheat ing (x , y) ,
”no path ” : hand lePlannerFa i lure ()) do
{

. . .
}

}

3. Monitors:
Monitor monitorPickup ()

max t r i g g e r s = 1 , max a c t i v a t i o n s = 15 ,
per iod = 0 : 0 : 1 . 5

{
i f (mailIsGone ())
{

t r i g g e r ;
with (p a r a l l e l) do
{

spawn speak (”Thank you ”) ;
spawn not i f ySender () ;

}
}

}

2.3. Review of Related Research 31

As part of this project, several programming support tools have been developed.
Some examples include a compiler for the definitions of tasks and diverse visualization
and debugging utilities.

2.3.2.4 SmartSoft

SmartSoft [Schlegel and Wörz, 1999b] is an object oriented framework devised to assist
developers in the implementation of sensorimotor systems. It has been developed by
Schlegel and Wörst at FAW (Research Institute for Applied Knowledge) at the Uni-
versity of Ulm in Germany. Like GenoM, SmartSoft is a software framework developed
to support a software architecture for a mobile robot [Schlegel and Wörz, 1999b].

Using Smarsoft it is possible to define a system as a set of modules which interact
and inter-communicate between them. Modules have a uniform structure organized in
a user area and a framework area. A module is a process, and it can be multithreaded.
There is a thread provided and controlled by the framework which is transparent to
module designers, that is responsible for all inter-communications between the inner
threads of each module, and also for communications between modules. The user can
organize the functionality of a module using multiple threads, if he/she considers that
necessary.

Figure 2.14: A SmartSoft module.

Each module provides different services, and those services are provided by
means of proxy objects which the framework calls “server objects”. A typical Smart-
Soft module appears in figure 2.14 with a server object. The model used for inter-
communication between modules is a client-server paradigm. If a module wants to
access to the services of another module, it needs to be provided with a server object
from the second module. Equally, it acts in the same manner to offer its own services
to other modules.

In SmartSoft, inter-communication between modules through server objects is

32 Chapter 2. Review of Related Research

carried out using an established set of mechanisms or communication primitives that
constitute several communications patterns, namely:

• Command: This is a primitive that implements an unidirectional communi-
cation pattern from the client module to the server module. This is a push
communication primitive initiated by the client.

• Command with Status: This is a primitive which is similar to the previous
one, the difference is that a status is returned by the server as a result of the
command. This is a pull communication primitive initiated by the client.

• Query: This is a pull communication primitive initiated at the client side. The
client makes a request and the server returns an answer. The client may get the
answer for its request synchronously or asynchronously. It is possible to manage
several requests before their answers being received.

• Autoupdate Newest: This is a push primitive initiated by the client. It imple-
ments a subscription mechanism of communication. While subscribed, a client
receives data from a server. The client may either access to the most recent
information received from the server, or block waiting for the next incoming
information.

• Autoupdate Timed: This primitive is similar to the previous one, except that
using this primitive a client can establish specific intervals of time at which it
wants to receive data from the server.

• Event: This is a push primitive initiated by the client. With this primitive a
client can subscribe itself in a server to receive signalizations of the occurrence of
a specific event controlled by the server. At subscription time the client provides
a condition under which the event should be signaled. The server is in charge
of signaling clients when the event gets activated according to the conditions
established by each client.

• Configuration: This is the most complex communication primitive. It has been
devised to have a module (the master) controlling externally another module (the
slave). Using this primitive a master module can interrupt another module in
order to either reconfigure or abort it.

The main parts of the implementation of SmartSoft are based on the ACE
software package [Schmidt, 1994] that ensures portability among different platforms.
Low level communication routines are built on top of TCX [Fedor, 1993]. SmartSoft
is an object-oriented framework for programming robotic systems that fosters asyn-
chronous communications between modules and asynchronous execution inside them.
The framework models inter-communications between modules using a client-server
paradigm. Contrarily to GenoM, the framework does not impose any structure on
the user area inside each module, thus, it is up to the user the correct use of the

2.3. Review of Related Research 33

primitives provided by the framework. On the other side it provides a rich set of stan-
dard communication patterns which prevent the user to be worry about inter module
communications. All in all, modules in SmartSoft constitute the main units for con-
structing robotic systems as they fit correctly in the definition we have adopted for
software components in section 2.2.

2.3.3 Others

From a software engineering point of view the majority of the solutions devised to
design and implement the software that controls robotic systems fall into the categories
previously commented of architectures, frameworks and programming languages, but
there are also other approaches. In this document we would like to make emphasis on
one of them we consider very interesting, because it shares some of the ideas which
are in the base of the work we present in this thesis. This approach is the Chimera
operating system that is briefly outlined in the following paragraphs.

2.3.3.1 Chimera

Chimera [Stewart and Khosla, 1993] [Stewart, 1994] [Stewart and Khosla, 1996]
[Stewart et al., 1997] is a real-time operating system developed at CMU (Carnegie
Mellon University) aimed to control robotic systems. Chimera is a multiprocessor
real-time operating system designed specifically to support the development of
dynamically reconfigurable software for robotic systems. The typical hardware
architecture where Chimera is applicable is an architecture containing one or more
open-architecture buses housing multiple single board computers called real-time
processing units (RTPUs).

The units of execution handled by the operating system are defined as soft-
ware modules called port-based objects. A port-based object is an automaton which
performs all its external communications by means of output and input ports. This
conceptual object was inspired by the concept of port automata given by Steenstrup
in [Steenstrup et al., 1983].

Port-based objects are also called tasks, because each one has its own flow of
execution. At a given moment in a specific processor there may be several port-based
objects running. Port-based objects communicate between them by means of its input
and output ports. Every output and input port is mapped to what is called a state
variable. Output ports are output state variables, and input ports are input state
variables. Port-based objects communicate using this mechanism of output and input
state variables.

The inter communication mechanism between port-based objects is based on
the combined use of global shared memory and local memory for the interchange of
data between software modules. Each port-based object in a given processor has its
own local table of state variables (local state variable table). Moreover, there is a
global state variable table shared by multiple processors that contains copies of all

34 Chapter 2. Review of Related Research

local state variables corresponding to the port-based objects running in the system in
a given moment. Tasks are executed cyclically iterating continuously through a task
body where is coded the functionality of the port-based object. For each task, at the
beginning of each iteration, the operating system transfers atomically the local output
state variables to the shared global state variable table, and also transfers the input
state variables from the global table to the local ones. This transferring is carried out
automatically by the operating system implementing a two-level memory scheme of
inter-communication. Conceptually, this mechanism of inter-communication between
port-based objects is similar to the poster-based mechanism of communication utilized
in GenoM, but in this case, it is supported directly by the operating system.

Figure 2.15: A typical control loop in Chimera.

Using interconnected port-based objects is possible to form multiple open and
closed loops in order to define multiple control loops in a system. Figure 2.15 shows a
typical control loop in Chimera. Task sets can be defined by forming different topologies
of interconnected port-based objects. Task sets may be reconfigured statically and
dynamically. A job is a high level description for a task set. Jobs can also be a
collection of other jobs, so hierarchical composition is possible. A control subsystem is
a collection of jobs running concurrently or in parallel. An application is one or more
subsystems executing in parallel.

In Chimera, the port-objects are the basic units of composition to form topolo-
gies of components in order to build applications by integrating them. The operating
system guarantees that port-based objects are deployable, because it imposes a clear
structure for all of them: a clear interface of output and input ports and a cyclical
internal structure. It is obvious that the concept of port-based object corresponds to
what we have called a software component.

2.4 Proposed Approach: CoolBOT

The work presented in this thesis has been mainly originated by very practical
reasons. While developing several robotic systems [Hernández-Tejera et al., 1999]
[Cabrera et al., 2000] we got to a point where the necessity of some common software in-
frastructure was a clear demand. This infrastructure had to be generic enough to design
any imaginable architecture for the projects we were involved at that moment. At the
same time, it had to allow us to integrate software more easily. As one of the results of
these projects we developed an agent-based software framework called CAV (Control

2.4. Proposed Approach: CoolBOT 35

Architecture for Active Vision Systems) [Domı́nguez-Brito et al., 2000b]. An active vi-
sion system termed DESEO (DEtención, SEguimiento y Reconocimiento de Objetos)
[Hernández-Tejera et al., 1999] aimed to detect, track and recognize faces, and an en-
tertainment museum robot called Eldi [Cabrera et al., 2000] were developed using CAV
as software infrastructure. CAV was a tool that allowed modelling software as networks
of interconnected software agents. It provided mechanisms for intercommunication be-
tween agents, whether residing in a remote computer or in the local machine. It lacked
many primitives and resources we consider were also necessary, like a more rich set of in-
tercommunication mechanisms, and a support to make multithreading less error-prone
and more systematic. Specially, it lacked mechanisms to facilitate software integration
that still remained being an important problem for us. Further work and experiences
using CAV has driven us to the present work passing by different phases which can
be tracked in documents [Domı́nguez-Brito et al., 2000a], [Cabrera-Gámez et al., 2000]
and [Domı́nguez-Brito et al., 2002] until the present work.

There are some questions and problems that appear repeatedly in every robotic
system: Multithreading and multiprocessing, distributed computing, hardware abstrac-
tion, software integration of legacy code and third party code, different levels of ab-
straction defining different levels of achievement, the development of a programming
tool for a group of users which may become wide and diverse, etc. For us the creation
of a framework modelling and implementing mechanisms and techniques to support
the resolution of these common problems was felt as a needed step forward.

2.4.1 Design Principles

In the next paragraphs we will introduce the design principles that have driven the
design and development of a component-oriented programming framework for robotics
called CoolBOT which is the subject of the present document.

2.4.1.1 Component-Oriented

The concept of software component introduced previously in section 2.2 defines soft-
ware units which have a context-free design, a clear uncoupling between external in-
terface and internal functionality, able to be subject to integration and composition
with other components, and easily deployable. A software framework being able to
program systems in terms of composing and integrating of components would be really
an interesting programming tool where software integration would be fostered. This is
an important feature, not only because it would avoid to build systems from scratch,
which is a very common situation, but also to promote the integration of software from
third parties.

As we have seen along the approaches commented in section 2.3 the use of
“standard” building blocks for constructing systems is not new. Not only frameworks
like GenoM and SmartSoft define a building software block to build and integrate system
software. Even architectures define blocks of integrable software fitting usually at each

36 Chapter 2. Review of Related Research

level of abstraction. Think, for instance, of behaviors in the subsumption approach, or
in the AuRA, SFX and DAMN architectures, and also of skills for the 3T architecture.
The same idea is behind port-based objects in Chimera. Having architectures and
frameworks, and evidently operating systems (think of normal processes and threads in
any operating system) defining “standard” software building blocks in order to integrate
bigger and more complex software allows to design and develop each block separately
and independently.

2.4.1.2 Component Uniformity

Certain level of uniformity in structure in software components is critical to allow a
basic uniform treatment of components in spite of their individual functionality. This
is not a new idea, operating systems have applied it for years. Binary programs in
any operating system have a given format imposed by the operating system. Only
in this way it is possible that programs can run in any computer running under a
given operating system. Based precisely on this idea, the Chimera operating system
has been devised to build robotic systems from the integration of process-like entities
called port-based objects as we have seen already in section 2.3.3.

Additionally, a uniform internal structure for components facilitates its observ-
ability and controllability, i.e. the possibility of monitoring and controlling the inner
state of a component. We consider that these properties are key elements when defin-
ing robust systems, making its design and implementation less error-prone. At the
same time, component’s internal uniformity sets a real basis for the development of
debugging and profiling tools.

In GenoM we can find that this concept of uniform external interface and internal
structure allows for the definition of different very useful tools for the developer like
compilers and component testers. Obviously this is not a consequence that comes up
spontaneously, but it is the result of a well-designed level of uniformity, shared by all
the entities that conform a system, which is imposed by the framework to all modules.

2.4.1.3 Robustness

Robustness is a design principle in nearly every robotic system. We deem that a
framework aimed to program them should provide mechanisms to promote robustness.
In CoolBOT we have followed a principle of robustness based on the following motto
(the robustness motto): “A component-oriented robot system will not be robust and
controllable if its components are not robust and controllable”. Complementarily to the
previous principle, we add the following considerations about robustness in individual
components:

1. Local Robustness: A component must be able to monitor its own performance
as a basic means of adapting itself to changing operating conditions. It must
also implement its own adaptation and recovery mechanisms to deal with all

2.4. Proposed Approach: CoolBOT 37

errors and abnormal situations which can be detected internally (cognizant failure
[Noreils, 1990][Gat, 1992]).

2. External Robustness: Any error detected by a component that cannot be
recovered locally by its own means, should be notified using standard means
through its external interface, bringing the component to an idle state waiting
for external intervention, that will order the component to continue, restart or
abort operation.

Furthermore, we will consider a component controllable when it can be brought
with external supervision - by means of a controller or a supervisor - through its
external interface, along an established control path (Principle of Controllability). This
is a feature we can also find in GenoM where it is possible to drive modules along a
small set of controlled states. Equally, in SmartSoft, there is the possibility of having a
module (the master) controlling externally another module (the slave) using a specific
communication pattern for configuring modules.

2.4.1.4 Modularity & Hierarchy

In a programming methodology where systems are constructed by integrating and
composing components, it would be of great interest to dispone of constructs to organize
components in a modular and hierarchical way. As systems grow in size and complexity
it is necessary to provide constructs to give more structure and reduce complexity.
Typical constructs are those that endow programs with modularity and hierarchy as
we can found in most of the modern programming languages. It is not strange to
find languages with constructs such as classes, name spaces, functions, modules in
programming languages like C++, Java, Ada, etc.

In the scope of the framework we want to build, modularity and hierarchy would
allow defining component composition as single components. Thus, in our component-
oriented framework there will be atomic and compound components. Atomic compo-
nents will be indivisible, i.e. they are not made up of other components. Compound
components will be components which include in their definitions other components,
whether atomic or not. Moreover, compound components must also integrate a su-
pervisor for their monitoring and control. With this vision, a whole system is nothing
else but a large compound component including several components, which in turn in-
clude another components, and so on, until this chain of decompositions finishes when
atomic components are reached. Thence, a complete system might be envisioned as a
hierarchy of components from a coordination and control point of view.

From the previous paragraph, it is clear that this concept of compound com-
ponents would be what will endow systems with modularity and hierarchy. Similarly
to the hierarchical constructs called jobs we can find in Chimera where it is possible
to gather together port-based objects to form task sets. Additionally, a hierarchical
structure promotes also a hierarchical treatment of errors which is also a common goal
of many architectures like Aura.

38 Chapter 2. Review of Related Research

2.4.1.5 Integrability & Incremental Design

We deem the framework should promote software integrability and incremental design.
Evidently, the principle of building systems by integrating components promotes inte-
grability. As collateral result, incremental design is not difficult to foresee. In this way,
systems could be built bit a bit, integrating component by component, adding more
functionality and capabilities as the development progresses.

We consider integrability and incremental design as key features for promoting
integration of code with a variability of origins, and that would allow reuse of software
originated from across different research groups. As an example, imagine a data base
of software components implementing ready-to-use state-of-art algorithms in multiple
fields of robotics. Systems could be built just integrating components, and components
in this data base would be there just for everybody to test and use.

2.4.1.6 Distributed

Components should be integrable and reachable in a system with independence of in
which machine they are running. That components were in same computer, or in a
different one residing in the same computer network, should be indifferent in terms
of component integration and interconnection. Therefore, integrating two components
residing in different machines should be as easy as if they were in the same one, in the
same manner that it is possible in SmartSoft to inter-communicate modules thanks
to the ACE software layer. In this way, SmartSoft provides a rich set of standard
communication patterns which prevent the user to be worried about inter module
communications even if the different modules reside in different computers.

2.4.1.7 Reuse

Components are units that keep their internals hidden behind a uniform interface. Once
they have been defined, implemented and tested they might be used as components
inside any other larger component or system. Modern robot systems are becoming
really complex systems and very few research groups have the human resources needed
to build systems from scratch. Component-oriented designs represent a suitable way
to alleviate this situation. We believe that research in robotics might enormously
benefit from the possibility of exchanging components between labs as a mean for
cross-validation of research results.

Code reuse can be promoted in multiple ways and at different levels. Exam-
ples are behavior reuse in subsumption architectures, and also in Aura and SFX; skill
reuse in 3T; and module reuse in GenoM and SmartSoft. In the case of the tool we
want to construct we consider that the minimal units that conform a system should
be deployable and integrable in order to make this minimal units able to be reused
wherever needed. Finally, we have considered the concept of software component in-
troduced in section 2.2.5 as the most convenient concept to embody these minimal
units of integration.

2.4. Proposed Approach: CoolBOT 39

2.4.1.8 Completeness & Expressiveness

The computing model underlying the framework should prove valid enough to build
very different architectures for robotic systems and expressive enough to deal with
concurrence, parallelism, distributed and shared resources, real time responsiveness,
multiple simultaneous control loops and multiple goals in a principled and stable man-
ner. Evidently, the more complete and general it is a framework, the less constrained
will be the systems we can develop using it.

For us, it looks like making a framework providing enough functionality and
means to solve some common problems inherent to robotic systems, which is neutral
in terms of architectural design and structure, could be a good starting point to find
out which features “a complete framework” should provide.

2.4.1.9 Operating System Support

Finally, another very practical principle of design we considered for the framework was
to support CoolBOT in the two operating systems which are mainstream at the present
moment: the Windows family of operating systems (Windows NT, 98, 2000 and XP),
and GNU/Linux. Although these operating systems are not real-time, they can provide
support and keep contraints for soft real-time systems [Ramamritham and Shen, 1998]
[Gopalan, 2001], such as multimedia and active vision systems. We do not discard
in the future the necessity of supporting the framework in some real-time operating
systems such as RTLinux [RTLinux, 2003] or RTAI [RTAI, 2003].

40 Chapter 2. Review of Related Research

Chapter 3

CoolBOT Fundamentals

In this chapter we will explain which ideas and concepts there are behind CoolBOT,
and how these ideas and concepts have been put into practice to implement a software
framework to program robotic systems.

3.1 Introduction

Ideally, software components should be something like electronic components or chips in
electronic industry. It is many years that off-the-shelf chips can be bought and deployed
anywhere. Each component has a clear functionality and also, a well established exter-
nal interface. Furthermore, numerous standard tools exist to design electronic devices
based on the composition, assembly and combination of these electronic components.
A similar panorama would be desirable in terms of software in robotics.

The last paragraph expresses the key idea that has driven the design and de-
velopment of CoolBOT from the beginning. Latest trends in Software Engineering are
exploiting the idea of Components as the basic units of development and deployment
when building complex software systems, specially if software reuse, modular compo-
sition and third-party software integration are important issues. CoolBOT should be
understood as a component-oriented framework, in the sense defined in section 2.2.5.

The concept of software component is fundamental in CoolBOT. The main
objective is to build robotic systems from the integration of software components.
Which properties, features and/or attributes should software components have, to claim
that systems can be build out of them by integration?. What is exactly a software
component in CoolBOT?. How are components integrated?. And above all, how has
all of this been implemented?. This chapter has been devised to answer such questions.

Next section, section 3.2, explains what a component is in CoolBOT. Section 3.3
describes the default features and traits that the framework imposes on all components.
In section 3.4 the model of execution that CoolBOT components use is detailed. Section
3.5 is addressed to explain how components inter communicate. Section 3.6 introduces
the concepts of atomic and compound components, and what they are for. Section 3.7

41

42 Chapter 3. CoolBOT Fundamentals

explains the network level in CoolBOT, how components can be accessed and used via
a computer network, making them distributed. Finally, the last section, section 3.8,
enumerates which objects and methods the framework makes available to developers
and users in order to design and develop CoolBOT components, and built systems
using CoolBOT abstractions and philosophy.

3.2 CoolBOT Components

As it has been mentioned previously in chapter 1, software typically involved in the
control of robotic systems may be very heterogeneous, involving numerous hardware
devices and software. Such a heterogeneity could be abstracted through a model of
interaction among the different elements composing a system. From this point of view,
a robotic system might be considered as a network of weakly coupled parallel and/or
concurrent active entities interacting asynchronously in some way. It is the interaction
among the entities involved and their local behavior what defines the task the system
carries out. This concept of active entity is what in CoolBOT has been identified as a
software component according to the definition of software component we enunciated
in 2.2.5. Therefore, they are characterized by a set of important features, namely: un-
coupling of external interface and internal implementation details, context-free design,
and ability to be subject to composition and integration with other components. All
them together make software components become deployable pieces of software that
can be reused wherever needed.

3.2.1 Port Automata

In CoolBOT, components are modelled as Port Automata
[Steenstrup et al., 1983][Stewart et al., 1997][Domı́nguez-Brito et al., 2000a]. This
concept establishes a clear distinction between the internal functionality of an active
entity, the automaton, and its external interface, its sets of input and output ports.
Components define active entities which carry out specific tasks, and perform all
external communication by means of their input and output ports. Components act
on their own initiative, running in parallel or concurrently, and are normally weakly
coupled, i.e. no acknowledgements are necessary when they communicate through
their ports.

Components can be atomic, i.e. indivisible, or compound when they are made
up of a composition or assemblage of other atomic and/or compound components.
With independence of their type, atomic and compound components are externally
equivalent, offering the same uniform external interface and internal control structure.
These properties are extremely important in order to attain standard mechanisms that
guarantee that any component can be externally monitored and controlled. Once a
component, atomic or not, has been designed, implemented and tested, it can be used
wherever it might be necessary. Therefore components constitute in CoolBOT the
functional building blocks to program robotic systems.

3.2. CoolBOT Components 43

Formally, CoolBOT defines software components as Port Automata. From
[Steenstrup et al., 1983] and [Kos̆ecká et al., 1997], a port automaton P is formally
defined as a generator G = (L, Q, τ, δ, β, X, Y, F), where:

• L is the set of ports.

• Q is the set of states.

• τ ⊆ Q is the set of initial states.

• X = {Xi : i ∈ L}, where Xi is the input set for port i.

• Y = {Yi : i ∈ L}, where Yi is the output set for port i.

• δ : Q × �i∈LXi → Q is the transition map, where
�i∈LXi = {(x, i) : x ∈ Xi} is the disjoint union of the Xi’s.

• β = {βi : i ∈ L}, where βi : Q → Yi is the output map for port i.

• F ⊆ Q is the set of final states.

All subject to the axiom that for each q ∈ Q : {x ∈ Xi : δ(q, (x, i)) �= ∅} = ∅

or Xi assuring that, in any state q ∈ Q, for any port i, either all elements of the input
set Xi will be capable of being accepted or none of them will.

The concept of port automaton establishes a clear distinction between the in-
ternal functionality of an active entity, the automaton, and its external interface, the
input and output ports. Figure 3.1 displays the external view of a component where
the component itself is represented by a circle, input ports, ii, by the arrows oriented
towards the circle, and output ports, oi, by arrows oriented outwards. As shown by
the figure, the external interface keeps the component’s internals hidden. Figure 3.2
depicts an example of the internal view of a component, concretely the automaton that
models it, where circles are states of the automaton, and arrows, transitions between
states. Transitions are triggered by events, ei, caused either by incoming data through
a port, or by an internal condition, or by a combination of port incoming data and
internal conditions. Double circles indicate automaton final states.

i1

in

o1

om

Figure 3.1:
Component

external view.

1 s2 s4 s6 s8 s9

s5

s3 s7

e 1 e 2 e 6
e

s
4

e 5

e 3

e 10

e 8

e 7

e 11

e 9

e 12

e 13

e 14

Figure 3.2: Component internal view.

44 Chapter 3. CoolBOT Fundamentals

3.2.1.1 Input Ports, Output Ports, Port Packets and Port Connections

In CoolBOT the port automaton’s set L is constituted by two disjoint sets: a set of
input ports, Li, and a set of output ports, Lo; such that they verify that L = Li ∪ Lo

and Li ∩ Lo = ∅.

An output port and an input port may form a port connection. Data are trans-
mitted through port connections in discrete units called port packets . Port packets are
defined as discrete units of information which can be received through input ports,
and/or issued through output ports. Therefore, port packets constitute the elements
of the input and output sets X and Y . Port packets are also classified by their type,
and usually each input and output port can only accept a specific set of port packet
types.

To establish a port connection both input and output ports must be compatible,
i.e. both ports must match exactly the type of port packets they can accept. CoolBOT
components interact and inter communicate each other by means of port connections
established among their input and output ports.

Additionally input and output ports can be public or private:

• Public: Input and output ports are visible and accessible from outside the com-
ponent. Thence, other components may freely use these ports to establish new
port connections.

• Private: Input and output ports are not externally visible. These ports are
hidden inside the component interface, and have three main uses:

– To support internal timers and watchdogs (sections 3.2.3 and 3.2.2.3).

– To control, monitor and inter communicate internal components inside com-
pound components (section 3.6.2).

– To control, monitor and inter communicate port threads inside components
(section 3.4.1).

3.2.1.2 Automaton States

The internal functionality of a component is defined by means of an automaton. The
transitions between states of the automaton are determined either by port packets
received through its input ports, or by any internal condition. Thus, in CoolBOT, in
order to define the internal automaton of a component, each state is defined by means
of several code sections:

• Entry Section: It is a portion of code which is executed each time the compo-
nent enters into a state when it comes from a different one.

• Exit Section: It is a portion of code that gets executed when the automaton is
about to leave the current state to transit to a different one.

3.2. CoolBOT Components 45

• State Transitions: Each transition in any state is associated to a portion of
code which is executed when the transition is triggered. In this portion of code,
it is also indicated towards which state the transition drives the component.

3.2.2 Robustness

Following the principle of robustness or robustness motto mentioned in section 2.4.1
in chapter 2 (“A component-oriented robot system will not be robust and controllable
if its components are not robust and controllable”) some important questions come
up: when is a component robust?, how is it possible to guarantee that a component
is robust?. Obviously, the robustness of a component can only be guaranteed by de-
sign and continuous testing, but we consider the framework should provide means and
facilities to help component developers to build robust components where observabil-
ity and controllability play fundamental roles. CoolBOT provides several framework
constructs in order to support a robust design of components, namely: observable and
controllable variables, component exceptions and watchdogs.

3.2.2.1 Observability and Controllability

Components should be observable enough to know whether they are working correctly
or not, and in that case, they should be controllable enough to make some adjustment in
their internal behavior to regulate and adjust their operation. Component functionality
must be kept hidden behind its external port interface, however means to monitor and
control such a functionality should be provided. CoolBOT introduces two kinds of
variables as facilities in order to support monitoring and control of components.

• Observable variables: Represent features of components that should be of in-
terest from outside, they are externally observable and permit publishing aspects
of components which are meaningful in terms of control, or just for observability
and monitoring purposes.

• Controllable variables: Represent aspects of components which can be exter-
nally controlled, i.e., modified or updated. Thence, through them the internal
behavior of a component can be controlled.

Thus, components provide resources to guarantee their observability and con-
trollability by means of these two sets of variables, evidently it is up to component
designers to use observable and controllable variables conveniently to fulfill such a
purpose.

3.2.2.2 Component Exceptions

Exceptions constitute a useful concept present in numerous programming languages
(C++ [Stroustrup, 2000], Java [Arnold et al., 2000], etc.). Usually, exceptions are pro-
gramming languages constructs that have been devised to separate error handling from

46 Chapter 3. CoolBOT Fundamentals

the normal flow of instructions in a program. Thence, exceptions are normally used to
signal erroneous or anomalous situations at runtime, and its occurrence provokes the
execution of a specific code to handle such situations through exception handlers.

Analogously, CoolBOT components may use exceptions to signal and handle
erroneous, exceptional or abnormal situations during its execution. Concretely, when
a CoolBOT component is defined during its design, it includes a list of component
exceptions, declaring each exception using the following pattern:

On Exception : < except ionId>
<de s c r i p t i on >
[<handler > [< r e t r i e s > <per iod >]]
[<onSuccessHandler >]
[<onFai lureHandler >]

where:

• <exceptionId> is an exception number to identify the exception.

• <description> is a description of the exception.

• <handler> is an optional handler to try an exception recovery procedure, op-
tionally <retries> indicates the number of recovery attempts, and <period>

specifies the period in milliseconds between attempts.

• <onSuccessHandler> is a handler to be executed in case of a successful recovery.
It is optional.

• <onFailureHandler> is also an optional handler which is executed when all
recovery exception tries have failed.

3.2.2.3 Port Watchdogs

Normally real time systems utilize watchdogs to signal a concrete type of abnormal
situation that happens when a temporal deadline has not been reached. Normally,
they are used to signalize that a task has not been completed within a specific amount
of time.

CoolBOT provides a construct to associate a port watchdog with an input port,
so that the watchdog is triggered when no port packets has been received through this
port for a period of time. When this situation occurs a component exception associated
with the watchdog is thrown.

3.2.3 Timers

CoolBOT also provides a timer construct, so that components may have timers to
signal normal and abnormal situations (periodic task execution, task watchdogs, etc).
As component exceptions and port watchdogs, timers fit in the port automata model

3.2. CoolBOT Components 47

as internal conditions in a component that signal events triggering specific transitions
in the component automaton.

3.2.4 Component Priorities

At execution time, CoolBOT components may have associated a specific priority, in
terms of competing for CPU time. Specifically, the priority of a component is deter-
mined by a priority policy and a priority level. CoolBOT has two priority spaces,
called priority policies, each with 16 different priority levels or priorities. The priority
policies can be normal or realtime; inside each policy there are 16 priority levels where
0 is the lowest priority, and 15, the highest one. The priority spaces corresponding to
both policies are disjoint spaces, where realtime policy priorities are higher than normal
policy priorities. In this way, components with realtime policy are always prioritized,
whatever priority they have, respect to any component with normal policy. Figure 3.3
depicts the range of component priorities.

The underlying operating system on top

R
E

A
L

T
IM

E
N

O
R

M
A

L

0

15
0

15

lowest

highest

PR
IO

R
IT

Y

Figure 3.3:
Component
priorities.

of which CoolBOT runs, assigns priorities to its
units of execution – processes and threads – when
they compete for CPU time. Depending on what
operating system is running CoolBOT component
priorities will be mapped differently.

As mentioned in section 2.4.1 of chapter 2,
a principle of design was to implement CoolBOT
into the two operating systems which are main-
stream at the present moment: the Windows fam-
ily of operating systems (Windows NT, 98, 2000
and XP), and GNU/Linux.

There are some differences between the
thread models used by these operating sys-
tems, therefore the CoolBOT priority model maps distinctly in both. Con-
cretely, in GNU/Linux, CoolBOT uses the pthread library that implements the
POSIX Threads specification [IEEE, 1996], and maps component priorities into the
POSIX priority model of scheduling policies (SCHED RR and SCHED OTHER) and pri-
orities [Nichols et al., 1996] [Bover and Cesati, 2001]. The mapping of priorities in
GNU/Linux is shown in figure 3.4. As to Windows, CoolBOT uses the Win32 standard
API using native threads, and maps component priorities into the Win32 priority model
of priority classes (REALTIME PRIORITY CLASS and NORMAL PRIORITY CLASS) and pri-
ority levels [Richter, 1997] [Solomon and Russinovich, 2000] [MSDN, 2002]. Figure 3.5
illustrates the priority mapping for Windows. In both operating systems, it is necessary
to have respectively, administrator and root rights to use the realtime component
priority policy, otherwise, the normal policy is the only policy available.

48 Chapter 3. CoolBOT Fundamentals

0

15
0

15

R
E

A
L

T
IM

E
N

O
R

M
A

L

20

−20
sched_get_priority_min(SCHED_RR)

SC
H

E
D

_O
T

H
E

R
SC

H
E

D
_R

R

. .
 .

. .
 .

. .
 .

. .
 .

sched_get_priority_max(SCHED_RR)

Figure 3.4: GNU/Linux component priority mapping.

0

15
0

15

C
L

A
SS

N
O

R
M

A
L

PR
IO

R
IT

Y
C

L
A

SS
PR

IO
R

IT
Y

N
O

R
M

A
L

R
E

A
L

T
IM

E

. .
 .

. .
 .

. .
 .

. .
 .

THREAD_PRIORITY_TIME_CRITICAL (31)

THREAD_PRIORITY_HIGHEST (26)

THREAD_PRIORITY_IDLE (16)

THREAD_PRIORITY_LOWEST (22)

THREAD_PRIORITY_ABOVE_NORMAL (25)

THREAD_PRIORITY_NORMAL (24)

THREAD_PRIORITY_BELOW_NORMAL (23)

THREAD_PRIORITY_TIME_CRITICAL (15)

THREAD_PRIORITY_HIGHEST (9)

THREAD_PRIORITY_LOWEST (5)

THREAD_PRIORITY_ABOVE_NORMAL (8)

THREAD_PRIORITY_NORMAL (7)

THREAD_PRIORITY_BELOW_NORMAL (6)

THREAD_PRIORITY_IDLE (1)

T
IM

E
R

E
A

L

Figure 3.5: Windows component priority mapping.

3.3 Component Defaults

A component-oriented approach clearly demands certain level of uniformity among
components (component uniformity design principle, chapter 2, section 2.4.1) in or-
der to have components which are observable, controllable and integrable. Within
CoolBOT this uniformity manifests itself in two important aspects:

• a minimal uniform external interface based on the concept of port automata
which allows component external observation and control in terms of execution,
and

• a minimal uniform internal structure which permits component execution to be
externally observed and controlled.

Classic operating system theory [Silberschatz et al., 2001] [Stallings, 2000] con-
siders as fundamental the principles of uniformity of interface and internal structure for
its units of execution. Such a uniformity permits operating systems to deal with these

3.3. Component Defaults 49

units of execution – processes and threads – atomically, and independently of the func-
tionality they have. Furthermore, it allows defining useful tools as design frameworks,
profilers and debuggers for their design and development.

...

...

empty
transition

timer

control

i1

in

monitoring

o1

om

Figure 3.6: Default ports.

Similarly, component uniformity in terms of interface and internal structure is
fundamental in CoolBOT. They constitute key elements to facilitate the design and
definition of robust systems, making their development and implementation less error-
prone, and establishing a real basis for designing and developing debugging and profiling
tools for components.

CoolBOT imposes component uniformity by means of what it is referred to
as component defaults. Component defaults are constituted by a set of features and
characteristics that all CoolBOT components include by definition. They enumerate
as follows:

• control and monitoring ports;

• default observable and controllable variables;

• the default automaton;

• default exceptions;

• a default timer and a default timer port;

• a default port for automaton empty transitions;

• and the main thread.

These default elements will be introduced and explained along the next subsec-
tions.

3.3.1 Control and Monitoring Ports

To guarantee external observation and control, CoolBOT components provide by de-
fault two important ports: the control port and the monitoring port, both depicted in
figure 3.6.

50 Chapter 3. CoolBOT Fundamentals

• The monitoring port: This is a public output port by means of which component
observable variables are published. Therefore, through this port, an external
observer or supervisor can observe and monitor a component.

• The control port: This is a public input port through which component control-
lable variables are modified and updated, consequently an external controller or
supervisor can control a component by means of this port.

So, component’s observable and controllable variables are respectively read or
published, and written through these two special ports. Note that this implies that
for each component both ports should be able to accept enough port packet types
to support publication of all its observable variables, and also to support updating of
all its controllable variables. Control packets are defined as port packets that modify
component control variables, and monitoring packets are defined as port packets used
to publish changes in observable variables.

3.3.2 Default Observable and Controllable Variables

CoolBOT provides components with several default observable and controllable vari-
ables as tables 3.1 and 3.2 show. The default observable variables are the following:

Default Observable Variables
Name Symbol Brief Description
state s Automaton state where the component is situ-

ated.
priority p Current component execution priority.
config c Asks for a supervised change of configuration,

or confirms configuration commands.
result r Result of execution.
error description ed Error description after the occurrence of a lo-

cally unrecoverable exception.

Table 3.1: Default observable variables.

• state: At any instant during component´s life cycle this variable publishes the
automaton state where the component is situated.

• priority: This observable variable is used to publish the component priority
(section 3.2.4) at which the component is running.

• config: This observable variable has been devised to be used as a way to pub-
lish internal configurations changes, or to confirm configuration commands com-
manded externally. Actually it is only used in compound components (see section
3.6.2.1.1).

3.3. Component Defaults 51

Default Controllable Variables
Name Symbol Brief Description
new state ns Desired automaton state where the component

has been commanded to go.
new priority np Desired execution priority the component has

been commanded to have.
new exception nex Externally induced exception.
new config nc Component’s configuration can be modified and

updated during execution through this control-
lable variable.

Table 3.2: Default controllable variables.

• result: If necessary, using this observable variable components may return data
as the result of a task execution. Components’ designers and developers decide
the type of data which is returned. In general component generates as result of
its task execution data issued through any of the output ports of its external
interface. But also, in some occasions, it might be necessary to produce a result
when task execution has finished, in such a way that, an external supervisor or
component controller could make control decisions based on this information.
This variable has been mainly devised with this purpose in mind.

• error description: As commented in subsection 3.2.2, components use excep-
tions to signalize abnormal and exceptional situations during execution. Usually
when an exception happens, the component tries to solve the erroneous condition
applying the error handlers associated with the exception, if none of them are
successful, the component enters into an erroneous situation. In this case, using
this observable variable the component publishes a description of the unrecovered
exception.

And, these are the default controllable variables:

• new state: Through this controllable variable a component can be commanded
externally to go to a specific state of its automaton.

• new priority: This controllable variable allows to command components to
change the priority at which they are running, so through this variable it is
possible to command the component to acquire a new specific priority.

• new exception: During component execution the occurrence of an exception can
be externally injected into the component by means of this controllable variable,
whose main purpose is to serve as a means to test the behavior of a component
against exceptions that might appear during execution.

• new config: Changes on the internal configuration of a component can be forced
using this port, such changes are confirmed by means of the observable variable
config. Actually it is only used in compound components (see section 3.6.2.1.1).

52 Chapter 3. CoolBOT Fundamentals

Bear in mind that the observable variable config and the controllable variable
new config has been devised mainly for future uses. Actually these two variables are
only used to control and supervise internal topology changes in compound components
(see section 3.6.2.1.1 for a detailed explanation). A future use that is actually foreseen,
but has not been implemented yet, is its use to control and observe components in
order to make them adaptable to system resource availability [Hernández-Sosa, 2003].

As mentioned previously (subsection 3.3.1) component´s observable variables
are issued and published through the monitoring port, and controllable variables are
updated through the control port. For each one of the default variables shown in tables
3.1 and 3.2, CoolBOT provides a port packet type which permits its transmission and
reception through these two ports. Hence, there are several default control packets and
several default monitoring packets to support these default variables. Component de-
velopers can add new observable and controllable variables, but notice that control and
monitoring packets corresponding to non default observable and controllable variables
should be defined by the component designer.

3.3.2.1 Component Execution Control Loop

In general, for a component, a typical execution control loop uses the control port to
exert control actions by means of control packets, and uses the monitoring port as the
feedback to close the loop, figure 3.7 helps to illustrate this idea. That implies that
control actions should be verified through the monitoring port, observing if any of the
component observable variables has been affected by the exerted action. In this way,
for instance, if a control action has been commanded to change the automaton state
of a component, the verification of that action should be to check that the observable
variable state has changed adequately in order to assure that the commanded state has
been reached.

. .
 .

. .
 .

external
supervisor

component

control

i1

in

monitoring

o1

om

Figure 3.7: Control and
monitoring ports: a typical

component control loop.

3.3. Component Defaults 53

3.3.3 The Default Automaton

Internally all components are modelled using the same default state automaton, the
default automaton, shown in figure 3.8, that contains all possible control paths that
a component may follow. In the figure, the transitions that rule the automaton are
labelled to indicate the event that triggers each one.

Some of the labels corresponds to internal events: ok, exception, attempt, last
attempt and finish. The remaining labels indicate events provoked by default con-
trollable variable changes: nsr, nsre, nss, nsd, np, and nex (see tables 3.1 and 3.2).
Subscripts in nsi indicate which state has been commanded, where subscript i can be
any of the followings: r (running state), re (ready state), s (suspended state), and
d (dead state).

The default automaton is said to be “controllable” because it can be brought
externally in finite time by means of the control port to any of the controllable states of
the automaton, which are: ready, running, suspended and dead. The rest of states
are reachable only internally, and from them, a transition to one of the controllable
states can be forced externally.

The running state, the dashed state in figure 3.8, constitutes or represents the
part of the automaton that implements the specific functionality of the component, and
it is called the user automaton. The user automaton varies among components depend-
ing on their functionality, and it is defined during component design and development.
The initial state of a user automaton constitutes its entry state.

Having a look to figure 3.8 it is possible to observe how CoolBOT components
evolve along their execution time, since they are launched, i.e. put into execution in
the underlying operating system, until they finish their execution.

As soon as a component is launched, it is brought to starting state, where
the component should capture resources needed for its operation and carry out its
internal initialization. If any error comes up while requesting resources or during
initialization, a component exception may be thrown. In this case, the automaton
transits to starting error recovery state. Alternatively, if resource allocation and
initialization is accomplished successfully, the component is brought into ready state.

A component gets to starting error recovery when a exception has been
thrown in starting state. In this state the component executes periodically the han-
dler of the thrown exception a maximum number of times (see Component Exceptions
in section 3.2.2), this is shown in figure 3.8 with a transition labelled attempt, which
is triggered by a timer. If the handler recovers successfully from the exception in any
of the attempts, its on-success handler is executed, and then, the component tran-
sits again to starting state to continue on with resource allocation and initialization.
Otherwise, the component executes the exception on-failure handler, then, is driven to
starting error state, where the component publishes an error description through the
controllable variable error description, and after that, it waits for external intervention
through the control port, in order to jump to dead state.

54 Chapter 3. CoolBOT Fundamentals

starting
ready

end
dead

running

starting
error

starting
error

recovery

suspended

recovery
error

running
error

ok
ok ok

exception

exception

last

last

attem
pt

attem
pt

attem
pt

attem
pt

(
∅

|
tim

er)

(
∅

|
tim

er)

ns
r

ns
r

ns
r

ns
r
e

ns
r
e

ns
r
e

ns
s

ns
d

ns
d

ns
d

ns
d

ns
d

finish

np

np

np
np

nex

nc

nc nc nc

F
igu

re
3.8:

T
h
e

D
efau

lt
A

u
tom

aton
.

3.3. Component Defaults 55

At ready state the component waits idle either for initiating a task execution,
getting into the user automaton – running state – by means of its entry state, or for
its destruction, if it is driven to dead state. In ready state, the component can also
be commanded to change its priority, or to accept a configuration command.

The running state is the part of the automaton – the user automaton – that
endows the component with its particular functionality, therefore, it is in this state,
where components accomplish their specific tasks. The user automaton has its own
states and transitions, but the default automaton imposes the following requirements
on it:

1. From any state of the user automaton it must be possible to drive the compo-
nent to suspended state (transition labelled as nsr in figure 3.8). This implies
that the component should be externally interruptible at any user state, with a
latency that will depend on its internal design. The component should save its
internal status in case of continuing task execution. From suspended state the
component can also be restarted, i.e. driven to ready state again, or brought
to dead state. In suspended state, the component can also be commanded to
change its priority, or to accept a configuration command.

2. It must be possible to change component priority at any user automaton state
(transition labelled as np in figure 3.8), or to accept a configuration command
(transition labelled as nc).

3. Some other default states must be accessible from any of the user automaton
states, because they indicate component generic situations:

• Error recovery state : It is reached when an exception is detected during
task execution. As with starting error recovery state, in this state, an
exception handler recovery procedure can be tried several times, until the
maximum number of attempts have been exhausted unsuccessfully. In that
case, the automaton goes to running error state. If the exception handler is
successful in any of the recovery attempts, the automaton continues where
normal task execution was interrupted previously. That implies that the
component internal status must be preserved during exception recovery as
well.

• Running error state: When a component has not been able to recover
itself from a component exception in the error recovery state, it transits
into this state. Only external intervention can drive the component again
to ready state to start a new task execution, or to dead state to finish
component execution. Additionally in this state, component priority can be
modified, and configuration commands can be accepted.

• End state: If a component has finished its task, then it goes directly to end
state, from which it can be brought to either dead state, or ready state.
In this state the result observable variable is published, in order to return a
value as a result of a task execution.

56 Chapter 3. CoolBOT Fundamentals

At dead state a component is supposed to finish its execution, so there, it should
execute all its finalization routines, and release all resources that have been allocated.

3.3.4 Default Exceptions

CoolBOT defines several default exceptions that components can make use of. These
exceptions are:

• No Memory : Indicates an out-of-memory situation during dynamic memory al-
location.

• Inconsistency : Signals an inconsistency in the component automaton. For in-
stance, if a component gets to any of the error recovery states of the default
automaton without previously having thrown a component exception.

• File Not Found : Stands for a file-not-found situation when a file is not found
where it should be.

Notice that, these default exceptions are defined by CoolBOT, but initially they
have no handlers associated. Component designers and developers may assign their own
handlers for them, and the number and period of recovery attempts.

3.3.5 Default Timer

CoolBOT components may have several timers, but initially, each one is provided
with a default timer, which is usually used to implement the mechanism of exception
recovery in the error recovery states (starting error recovery and error recovery)
of the default automaton (see figure 3.8).

Usually components use private input ports to realize when their internal timers
get triggered. Due to the fact that all components are provided with a default timer
by CoolBOT, they are also equipped with a default private input port called timer to
be used by the internal default timer. This is one of the input ports that appears in
figure 3.6.

3.3.6 Other Defaults

A component, due to its internal design and functionality, may need to force a transition
internally. This can be carried out using what is called an empty transition. To do so
and to signal itself these kinds of transitions, all component is provided also with an
additional private input port called empty transition. It appears also in figure 3.6.

There is another component default that will be explained in the next section,
but that must be mentioned here since it is also a component default: the main thread.
Its detailed explanation is deferred to the next section.

3.4. Component Nuts and Bolts 57

3.4 Component Nuts and Bolts

According to the definition for CoolBOT components given in section 3.2, com-
ponents are weakly coupled entities that execute concurrently or in parallel, on
their own initiative, in order to achieve their own independent objectives. Thence,
components are not only data structures, but execution units as well. In fact,
CoolBOT components are mapped as threads when they are in execution; Win32
threads [Solomon and Russinovich, 2000] [Richter, 1997] [MSDN, 2002] in Windows,
and POSIX threads [Nichols et al., 1996] [IEEE, 1996] in GNU/Linux.

1 void Component : : k e rne l ()
2 {
3 PortPacket packet ;
4

5 i n i t i a l i z a t i o n () ;
6

7 whi le (t rue)
8 {
9 packet=waitForSomething (inputPorts) ;

10

11 i f (! processPortPacket (packet)) break ;
12 } // end o f whi l e
13

14 f i n a l i z a t i o n () ;
15 }

Figure 3.9: Simplified C++ kernel code.

port
packet
loop process

port packet

initialization

finalization

Figure 3.10: Simplified kernel.

At runtime a CoolBOT component executes a continuous loop processing port
packets. Figure 3.9 lists a simplified C++ version of the code corresponding to this
loop, and figure 3.10 depicts a graphical representation of it. This processing loop
is referred to as the component kernel, and in it, the component carries out different
actions depending on which input port has received each port packet, and in which
state of its automaton the component is. This is why, components are said to be
input-port-driven.

3.4.1 Port Threads

Frequently, it might be convenient that a CoolBOT component uses multiple threads to
execute itself, in this case there would be some flows of execution running concurrently
and/or in parallel, each one running a loop processing port packets. Figure 3.11 helps
to illustrate the idea.

In CoolBOT, threads used inside a component to execute itself are called port
threads. Although port threads are not components, they are also input-port-driven, in
the sense that their execution is driven by the port packets they receive through a set
of input ports. Thence, port threads are also processing port packet loops at runtime.

In a component a port thread is responsible for a subset of the whole set of input
ports of the component. Thus, it is in charge of executing the transitions corresponding

58 Chapter 3. CoolBOT Fundamentals

. .
. .

. .
. .

. .
. .

. .
. .

Figure 3.11: Multiple threads.

to this subset of input ports. Note that subsets assigned to different port threads
should be disjoint. The same is applicable to output ports, thence, each port thread
is also responsible for a subset of the component´s output ports. The kernel of a
multithreaded component will include several port threads executing their own port
packet loops having the appearance shown in figure 3.11.

Like components, port threads have also two ports for its external observability
and control: an input port for control and an output port for monitoring. At runtime
they follow an automaton as well, in particular the automaton displayed in figure 3.12
which consists of three states:

• suspended: Once a port thread has been launched, it gets to suspended state,
where it remains idle until it is ordered, externally and through its control input
port, to go to running or dead states.

• running: In this state the port thread executes continuously running compo-
nent´s automaton transitions according to the port packets it receives through
the input ports it is in charge of. From this state it can be driven to suspended
or dead states by means of the control input port.

• dead: The port thread gets to this state to finish its execution.

For further clarification in figure 3.13 it is shown the C++ pseudo code cor-
responding to the automaton of figure 3.12. This is the port thread kernel, and con-
stitutes the port threads’ port packet loop. Observe that each time the port thread
change their state, it publishes its current state (through its monitoring output port)
– publish(currentState).

3.4. Component Nuts and Bolts 59

suspended running port
packet

run

suspend
finishfinish

dead

Figure 3.12: Port thread automaton.

3.4.2 The Main Thread

At runtime CoolBOT components, whether multithreaded or not, executes its automa-
ton, composed by the default automaton and the user automaton explained in section

1 void PortThread : : k e rne l (Component& component)
2 {
3 PortPacket packet ;
4 InputPort port ;
5

6 cu r r en tS ta t e=nextState=SUSPENDED;
7

8 whi le (cu r r en tS ta t e !=DEAD)
9 {

10 pub l i sh (cu r r en tS ta t e) ;
11

12 whi le (cu r r en tS ta t e==nextState)
13 {
14 switch (cu r r en tS ta t e)
15 {
16 case SUSPENDED:
17 packet=waitForSomething (cont ro lPor t) ;
18 nextState=packet . g e tS ta t e () ;
19 break ;
20

21 case RUNNING:
22 port=waitForSomething (inputPorts) ;
23

24 i f (port==cont ro lPor t)
25 {
26 packet=getPacket (cont ro lPor t) ;
27 nextState=packet . g e tS ta t e () ;
28 }
29 e l s e runTrans i t i on (component , port , packet) ;
30

31 break ;
32 }
33 } // end o f whi l e
34

35 cu r r en tS ta t e=nextState ;
36 } // end o f whi l e
37

38 pub l i sh (cu r r en tS ta t e) ;
39 }

Figure 3.13: Pseudo C++ port thread kernel code.

60 Chapter 3. CoolBOT Fundamentals

3.3.3. A CoolBOT component can execute by means of multiple threads, but at least,
it needs one thread to run. This is the thread that executes the automaton of the
component, that controls and observes the component´s port threads, if any, and that
keeps its internal state consistent, in the sense that, it is responsible for maintaining
the consistency of the internal data structures that conform the internal state of the
whole component. This thread is called the main thread. The main thread is also a
component default provided by CoolBOT as commented in section 3.3.6.

The main thread controls the execution of the component, executing port tran-
sitions, transiting from state to state, and launching, suspending, running and killing
or destroying – un-launching – port threads, if any. A detailed explanation of this
aspect of the main thread is deferred to the next section.

During design and implementation of a multithreaded component it is necessary
to indicate for each state which port thread should be running on each automaton state.
At runtime the main thread will run and/or suspend each port thread depending on
in which state of the automaton the component is along its execution. Remember that
port threads have their own control and monitoring ports. Therefore, for each internal
port thread the component should dispose of two internal private ports, an output one
and an input one, to control and monitor its execution.

3.4.2.1 The Component Kernel

Figure 3.14 shows the pseudo C++ code that constitutes the core of all CoolBOT
components at runtime. This is the port packet loop that keeps the execution of a
component consistent. This is the code that is executed by the main thread of any
CoolBOT component, and constitutes a more detailed version or the component kernel
shown in figures 3.9 and 3.10. In a multithreaded component it will correspond to one
of the threads appearing in figure 3.11.

Mainly, the component kernel consists of two nested while loops, where the outer
one cycles indefinitely until the component finishes its execution, what happens when
it arrives to dead state (see the default automaton on figure 3.8). This situation is
codified inside the component kernel with a special value, NOT RUNNING. The component
kernel´s variable currentState takes that value when the automaton is about to
finish. The inner loop executes the automaton transitions corresponding to each state
of the component automaton, and it ends when a transition drives the component to
a different state.

Observe that once the component has been launched, and before getting into
the first while loop of figure 3.14, the component kernel initializes some local vari-
ables, currentState, lastState, nextState, etc., and launches its internal port
threads, launchPortThreads(). Note from figure 3.12 that once port threads have
been launched, they get to suspended state where they keep doing nothing, until
they are ordered to go to other state.

At the beginning of each outer loop iteration of the kernel the observable variable
state, table 3.1, is published by means of the component monitoring port, publish-

3.4. Component Nuts and Bolts 61

1
v
o
id

C
o
m

p
o
n
e
n
t
:
:
k
e
r
n

e
l
(
)

2
{

3
T

r
a
n

s
it

io
n

F
u

n
c
t
io

n
t
r
a
n

s
it

io
n

;
4

C
o
n

t
r
o
lT

r
a
n

s
it

io
n

F
u

n
c
t
io

n
c
o
n

t
r
o
lT

r
a
n

s
it

io
n

;
5

In
p
u
t
P

o
r
t

s
ig

n
a
le

d
P

o
r
t

;
6

C
o
n

t
r
o
ll

a
b

le
V

a
r
ia

b
le

c
o
n

t
r
o
lV

a
r
ia

b
le

;
7 8

e
x
c
e
p

t
io

n
S

t
a
t
e
=
N

O
S
T
A

T
E

;
9

e
x
c
e
p

t
io

n
=
N

O
E
X

C
E
P
T
IO

N
;

1
0

1
1

la
s
t
S

t
a
t
e
=
N

O
T

R
U

N
N

IN
G

;
1
2

c
u

r
r
e
n

t
S

t
a
t
e
=
S
T
A

R
T
IN

G
;

1
3

1
4

la
u
n
c
h
P

o
r
t
T

h
r
e
a
d
s
(
)

;
1
5

1
6

w
h

il
e

(
c
u

r
r
e
n

t
S

t
a
t
e
!=

N
O

T
R
U

N
N

IN
G

)
1
7

{
1
8

p
u

b
li

s
h

S
t
a
t
e

(
)

;
/

/
P

u
b

li
s
h

c
u

r
r
e
n

t
s
t
a
t
e

1
9

2
0

s
e
t
C

o
n
t
r
o
lM

a
s
k

(
c
u

r
r
e
n

t
S

t
a
t
e

)
;

2
1

s
e
tM

a
s
k

(
c
u

r
r
e
n

t
S

t
a
t
e

)
;

2
2

2
3

la
u
n
c
h
S
to

p
W

a
tc

h
D

o
g
s
(
c
u

r
r
e
n

t
S

t
a
t
e

)
;

2
4

2
5

n
e
x
t
S

t
a
t
e
=

r
u

n
E

n
t
r
y
S

e
c
t
io

n
(
c
u

r
r
e
n

t
S

t
a
t
e

)
;

2
6

2
7

r
u
n
P

o
r
t
T

h
r
e
a
d
s
(
)

;
2
8

2
9

w
h

il
e

(
n

e
x
t
S

t
a
t
e=

=
c
u

r
r
e
n

t
S

t
a
t
e

)
3
0

{
3
1

fl
u

s
h

O
b

s
e
r
v
a
b

le
V

a
r
ia

b
le

s
(
)

;
3
2

3
3

/
/

G
e
t

s
o
m

e
t
h
in

g
fr

o
m

a
n
y

p
o
r
t

3
4

s
ig

n
a
le

d
P

o
r
t=

w
a
it

F
o
r
S
o
m

e
t
h
in

g
(
in

p
u

t
P

o
r
t
s
)
;

3
5

3
6

i
f
(
s
ig

n
a
le

d
P

o
r
t=

=
c
o
n

t
r
o
lP

o
r
t
)

3
7

{
3
8

c
o
n

t
r
o
lV

a
r
ia

b
le

=
3
9

g
e
t
I
n

d
e
x

(
s
ig

n
a
le

d
P

o
r
t
)
;

4
0

4
1

c
o
n

t
r
o
lT

r
a
n

s
it

io
n
=

4
2

g
e
t
C

o
n

t
r
o
lT

r
a
n

s
it

io
n

(
c
u

r
r
e
n

t
S

t
a
t
e

,
4
3

c
o
n

t
r
o
lV

a
r
ia

b
le

)
;

4
4

4
5

/
/

E
x
e
c
u
t
e

c
o
n

t
r
o
l

t
r
a
n

s
it

io
n

4
6

i
f
(
c
o
n

t
r
o
lT

r
a
n

s
it

io
n

)
4
7

n
e
x
t
S

t
a
t
e
=

4
8

c
o
n

t
r
o
lT

r
a
n

s
it

io
n

(
s
ig

n
a
le

d
P

o
r
t

,
4
9

c
o
n

t
r
o
lV

a
r
ia

b
le

)
;

5
0

}
5
1

e
ls

e
/
/

!=
c
o
n

t
r
o
lP

o
r
t

5
2

{
5
3

t
r
a
n

s
it

io
n
=

g
e
t
P

o
r
t
T

r
a
n

s
it

io
n

(
c
u

r
r
e
n

t
S

t
a
t
e

,
5
4

s
ig

n
a
le

d
P

o
r
t
)
;

5
5

/
/

E
x
e
c
u
t
e

t
r
a
n

s
it

io
n

5
6

i
f
(
t
r
a
n

s
it

io
n

)
5
7

n
e
x
t
S

t
a
t
e
=

t
r
a
n

s
it

io
n

(
s
ig

n
a
le

d
P

o
r
t
)
;

5
8

}
5
9

}
/
/

e
n
d

o
f

w
h

il
e

6
0

6
1

s
u
s
p
e
n
d
P

o
r
t
T

h
r
e
a
d
s
(
)

;
6
2

6
3

r
u

n
E

x
it

S
e
c
t
io

n
(
c
u

r
r
e
n

t
S

t
a
t
e

)
;

6
4

6
5

fl
u

s
h

O
b

s
e
r
v
a
b

le
V

a
r
ia

b
le

s
(
)

;
6
6

6
7

la
s
t
S

t
a
t
e
=

c
u

r
r
e
n

t
S

t
a
t
e

;
6
8

c
u

r
r
e
n

t
S

t
a
t
e
=

n
e
x
t
S

t
a
t
e

;
6
9

}
/
/

e
n
d

o
f

w
h

il
e

7
0

7
1

u
n
la

u
n
c
h
P

o
r
t
T

h
r
e
a
d
s
(
)

;
7
2
}

F
ig

u
re

3.
14

:
C

om
p
on

en
t

ke
rn

el
.

62 Chapter 3. CoolBOT Fundamentals

State(). Then, two masks are established, setControlMask() and setMask(), for
the current automaton state. The first one, the control mask, masks the controllable
variables that do not provoke any automaton transition in the current state. The
second one, the port mask, masks the input ports that do not trigger any transition
either. After that, if there should be any active watchdogs in the current state, they
get started; and at the same time, any active watchdog that should be inactive, is
stopped, lauchStopWatchDogs(). Next, the entry section of the current state, if any,
is executed, runEntrySection(). Note that a change of state can be forced in this
point, since runEntrySection() returns the next state to go. This has been devised
for states like starting and dead in the default automaton (figure 3.8) that do not
have any transition triggered by input port packets.

If the component is multithreaded, all internal port threads previously launched,
that should be running in the current state, are ordered to change their internal state
to running (see figure 3.12), runPortThreads(). In this way, they will be able to
manage the transitions corresponding to the input ports they are responsible for.

Next, the kernel starts the inner loop that is in charge of executing the tran-
sitions corresponding to each state. Concretely, all observable variables that have
changed are published, flushObservableVariables(), by means of the monitoring
port. Mind here that the main thread executes also port transitions, so in a mul-
tithreaded component, transitions are executed by the main thread, concurrently
(and/or in parallel) with the internal port threads that are running at the current
automaton state. This is the reason of having the port threads, and the main thread
as well, being in charge of the transitions associated to different disjoint subsets of
the component´s input and output ports. It is mandatory that the main thread at
least should be responsible for the component´s default ports, the control port and
monitoring port of figure 3.6.

Following the nomenclature of Win32 API [MSDN, 2002] [Richter, 1997]
[Solomon and Russinovich, 2000], CoolBOT input ports are synchronization objects,
that is, they can have two states, signaled or non signaled. A component can block its
execution, waiting until a non signaled input port is set to the signaled state. Usually,
input ports keep non signaled while they have not received new port packets since the
last time the input port´s owner, the component, accessed the port to get an incoming
packet. They get signaled when a new port packet has just been received. Once they
change their state to signaled they hold this state until one of the following operations
is carried out:

• Testing : This is an operation to test whether an input port is signaled or not. In
case of being signaled, the testing operation atomically makes the input port non
signaled, and returns a value to indicate that the port was signaled. Otherwise,
the operation returns simply a value specifying that the port was non signaled.

• Waiting : This operation is also used to test if an input port is signaled or not,
but it operates differently. In case of not being signaled the operation blocks the
caller. It will continue on waiting, blocked until the port gets signaled. Just at

3.4. Component Nuts and Bolts 63

the moment of being signaled again, the waiting operation atomically unblocks
the caller, makes the port non signaled, and returns a value indicating that it
was signaled. In case of being signaled, it operates in the same way that a testing
operation. Finally, mind that a waiting operation can be “timed” in the sense
that it is possible to specify how long the caller will be blocked waiting for a
port signalization. If the port does not get signaled along the time specified,
the waiting operation returns a value indicating that the port was not signaled.
Notice that a timed waiting with time of zero is equivalent to a testing operation.

Therefore, and going on with the description of the kernel inner loop, once the
observable variables are published, the component waits for (observe that is not a timed
wait) that any not-masked input port gets signaled, waitForSomething(). So that,
the component keeps blocked there until, at least, one of its input ports changes to
signaled, due to the reception of a new incoming port packet. Notice in figure 3.13 that
port threads use the same type of operation on input ports to wait for incoming port
packets, waitForSomething().

Observe that according to that, depending on at which rate or frequency a
component is receiving port packets, the component (the threads that execute it) would
be blocked for most of its execution time. Thus, components could be described as
data-flow-driven machines, processing when they dispose of data in their input ports,
and otherwise, keeping idle, waiting for processing new input port packets.

Once an input port has been signaled in the kernel inner loop, it is determined
whether there is a transition associated with the signaled port. Notice that, if this
port is the control port, it is necessary to find out which controllable variable has been
updated, controlVariable, in order to select its associated transition. Finally the
transition, whether a control transition or not, is executed. Note that the return value
of running transitions is the state where the component should go.

The inner loop finishes when any of the triggered transitions returns a state
which is different from the current one. What the outer loop does next is to suspend
the port threads that are running at that moment, suspendPortThreads(). Bear in
mind that the main thread, and the component´s internal port threads share the same
address space. Having all port threads suspended outside the inner loop, guarantees
that none of them accesses and/or modifies component´s internal data structures, that
could be a danger for the consistence of the its execution.

After that, the component kernel executes the state exit section, runExit-

Section(), then, it publishes any observable variable that could have changed, and
transits to the next state. In this way the kernel keeps iterating indefinitely until the
next state to transit is NOT RUNNING, that, as commented in a previous paragraph,
occurs when the component gets into dead state and runs its entry and exit sections.
Once the component kernel quits its outer loop, it destroys – un-launches – all its
internal port threads, if any, and then finishes itself.

Finally, it is significant to pay attention to the fact that, the component kernel,
and the kernels of the port threads it might have, are processing loops of input port

64 Chapter 3. CoolBOT Fundamentals

packets, where always that an input port gets signaled, its associated portion of code,
an automaton transition, is executed. This transition is executed synchronously, in the
sense that its corresponding flow of execution (run by either the component kernel, or
one of the port thread kernels), runs completely the transition, and then, returns to
continue on. Actions exerted on the component due to transitions originated by port
packets received through the control port are called control actions, and the transitions
that carry out then are called control transitions. Like all automaton transitions, control
transitions are also executed synchronously. Actions derived from the execution of
transitions originated by port packets received by the rest of the component´s ports are
called functional actions, and their associated transitions are referred to as functional
transitions. Their execution is synchronous as well. All in all, the execution of control
actions is interleaved with the execution of functional actions corresponding to non
control transitions. They do not interfere each other and, as a consequence, functional
actions are atomic respect to control actions, and vice versa, in the same way that
the portions of code called codels in GenoM [Fleury et al., 1997] are also considered
atomic. From figure 3.14 it is evident that automaton state entry and exit sections are
also atomic in the same sense.

3.4.3 Input Port Priorities

At runtime, CoolBOT components keep an internal queue or fifo of signaling input
ports. Input ports get inserted in it when they become signaled, and get extracted
from it when they become non signaled. During execution the component kernel and
the possible port threads keep reading and emptying this queue as they process port
packets. Note that waitForSomething() function invocations in figures 3.9, 3.13 and
3.14 access the queue to know which input port gets signaled with new incoming port
packets. On the other side, each time an external component sends a port packet
through any of the component´s input ports, they get signaled, and therefore, queued
into the fifo. It is important to notice that component´s input ports get inserted in the
internal queue as they get signaled, and they are extracted from it in the same order
they were inserted.

In general, using a queue of signaled input ports for all component´s input
ports is enough, but it was considered interesting to have the possibility of establishing
priorities of input ports. In this way, the component kernel and the port threads, if any,
could process first port packets of input ports with higher priorities. As a consequence
of this idea, CoolBOT provides the possibility of establishing different level of priorities
for attending the input ports of a component.

3.5 Inter Component Communications

Analogously to modern operating systems that provide IPC (Inter
Process Communications) mechanisms to inter communicate processes
[Silberschatz et al., 2001], CoolBOT provides Inter Component Communications

3.5. Inter Component Communications 65

or ICC mechanisms to allow components to interact and communicate among them.
CoolBOT ICC mechanisms are carried out by means of input ports, output ports,
and ports connections (section 3.2.1). More precisely, any ICC mechanism may be
only put into practice through a previously established port connection.

Two main principles have driven the design and development of these ICC mech-
anisms:

• Asynchronous Communications: According to the definition of CoolBOT com-
ponents given in section 3.2, they are weakly coupled entities that execute con-
currently or in parallel, on their own initiative, in order to achieve their own
independent objectives. To allow for these component’s properties of weakly cou-
pling and independency, all CoolBOT ICC mechanisms are asynchronous. That
is, the operations of data sending and reception are completely uncoupled, and
are carried out in different instants of time by different components.

• Transparency and Minimization of Inter Component Synchronization: The prob-
lem of inter component synchronization comes up when more than one component
try to access the same data at the same time. In the case of ICC mechanisms, this
problem of synchronization appears with the data structures and code that imple-
ments CoolBOT input and output ports, and port connections. ICC mechanisms
has been implemented in a way that all synchronization details are kept hidden to
make them transparent to their users, the components themselves. Additionally,
a main motto have been adopted to minimize synchronization: “Wherever it is
possible, and for each component, try to keep local copies of any data needed
to work independently, in this way, synchronization is only necessary to update
such copies.” This motto will be referred as the cache motto.

Communications are one of the most fragile aspects of distributed systems.
In CoolBOT, the rationale for defining standard methods for data communications
between components is to ease inter operation among components that have been
developed independently, offering optimized and reliable communication abstractions.
The rest of this section will explain the basic ICC mechanisms that CoolBOT supports,
and how these mechanisms are used on each typology of port connections provided by
CoolBOT.

3.5.1 Basic ICC Mechanisms

As already commented in section 3.2.1 the inter communication of components consists
of the sending and reception of port packets through port connections previously es-
tablished. A port connection involves two components, the sender, which is the owner
of the output port involved in the connection, and the receiver in the other end, the
owner of the input port. To form a valid port connection between them it is mandatory
that both ports admit the same types of port packets. Thus, once port connections
have been established and formed between two or more components, ICC mechanisms
are responsible for sending and receiving port packets through them.

66 Chapter 3. CoolBOT Fundamentals

It is important to highlight here that these basic ICC mechanisms are local, in
the sense that they can only be used to inter communicate components running in the
same machine. The problem of inter communicating distributed components will be
addressed later in section 3.7.

ICC mechanisms are classified depending on which side involved in a port con-
nection executes each mechanism, either the sender or the receiver, corresponding
respectively to the output port and the input port taking part in the connection. Be-
sides, they are also classified depending on which of them takes the initiative in the
communication. Hence, sender side mechanisms are defined as those mechanisms that
the sender executes on its output ports (usually to send port packets), and receiver
side mechanisms are those mechanisms carried out by the receiver on its input ports
(normally to access incoming port packets).

There are six sender side mechanisms: active sending (AS), active sending with
copy (ASC), passive sending (PS), signal sending (SS), sender shared writing (SSW)
and sender shared reading (SSR); and five receiver side mechanisms: passive reception
(PR), active reception (AR), signal reception (SR), receiver shared reading (RSR), and
receiver shared writing (RSW).

Figure 3.15 shows which pairs of sender side and receiver side ICC mechanisms
are valid, note that whatever other combination is not possible. Output ports on
the sender side and input ports on the receiver side use these mechanisms to inter
communicate component through connections. Next, in the following subsections all
these mechanisms will be described in detail.

Active Reception (AR)

Signal Reception (SR)

Receiver Shared Writing (RSW)

Receiver Shared Reading (RSR)

Passive Reception (PR)

RECEIVER SIDESENDER SIDE

Active Sending (AS)

with Copy (ASC)

Passive Sending (PS)

Signal Sending (SS)

Sender Shared Writing (SSW)

Sender Shared Reading (SSR)

Active Sending

Figure 3.15: ICC mechanism pairs.

3.5.1.1 Active Sending (AS), Active Sending with Copy (ASC) and Passive
Reception (PR)

Figure 3.16 illustrates the active sending (AS) mechanism by means of which, a com-
ponent sends a packet through one of its output ports. To do so the output port must
take part into a port connection, this is indicated on the figure with the arrow labelled
“port connection”. The whole mechanism consists of three sequential steps:

1. Acquisition: To send data to the other end of a port connection it is necessary

3.5. Inter Component Communications 67

to ask the output port for a port packet, labelled “output packet” in the figure,
the sender gets a reference to it.

2. Data Writing : Next, the sender writes data in the output packet by means of
the acquired reference.

3. Sending : The sender swaps the output packet with an internal packet in the
input port at the other end of the connection, and change the state of the input
port to signaled.

Figure 3.16 illustrates the active sending mechanism when the output port forms
only one connection with an input port, but it is very common that an output port
takes part into several port connections. In this case, the mechanism adds a new step,
shown in figure 3.17, between the second and the third steps. Let us suppose that the
port is involved in n port connections, then, once the second step of writing data has
been finished, it is carried out a third sending step for each one of the connections.
Specifically for each one of the first n − 1 connections, the sending with copy step of
figure 3.17 is added. Finally, for the last connection, the third step of sending with
swapping of figure 3.16 is carried out. For this case, the ICC mechanism is called active
sending with copy (ASC).

2

output packet

output port input port

internal packet input packet

ns

non signaled

1 2 3
acquisition

(a reference)

RECEIVER
SIDEtime

input port

internal packet input packet

ns

2 3

input port

internal packet input packet

3

s

signaled

data
writing

sending

output packet

output port

output packet

output port

SIDE
SENDER

port connection

port connection

port connection

swapping

Figure 3.16: Active sending (AS).

All sending steps of figures 3.16 and 3.17 are atomic, in the sense that the
sender is accessing information which is shared with the receiver. Keep in mind that
the sender is responsible for doing the packet swapping or copying, and the input
port signaling. These operations are protected internally by synchronization objects,

68 Chapter 3. CoolBOT Fundamentals

critical sections and events in Win32 [MSDN, 2002] [Richter, 1997], and mutexes and
conditions variables in POSIX [Nichols et al., 1996], due to the fact that the input
port may be involved in several port connections, and therefore, there may be several
senders doing active sendings on it. Additionally, the receiver may be trying to access
the port to read an incoming packet. Concerning synchronization costs, packet copy
in figure 3.17 is the most costly one. Note that packet swapping in figure 3.16 has a
very low cost in computational terms, it is just a swap of pointers or references.

RECEIVER
SIDE

internal packet input packet

3

s

signaled
input port

sending

copy

output port

output packet

SENDER
SIDE

port connection

Figure 3.17: Active sending with copy (ASC).

It is said that these two ICC mechanisms (AS and ASC) are “active”, because
in both cases the sender is responsible for transferring the port packet from its scope to
the scope of the receiver. That implies that the sender usually makes the most costly
operation, which happens when it has to make a copy of the output packet in the
internal packet of the input port at the other end of the connection, as shown in figure
3.17. Notice that this situation occurs whenever the output port is involved in more
than one port connection, what requires making a copy for each connection except for
the last one. All in all, active sending and active sending with copy are sender side
mechanisms that allow a sender, by means of a port connection, to situate a packet in
the space of the receiver. Thus, it is said that the sender is the “active” entity.

Figure 3.15 indicates that the receiver side ICC mechanism corresponding to
sender side mechanisms active sending and active sending with copy is passive reception
(PR). In figure 3.18 appears the sequence of steps that conforms a passive reception.
It comprises three steps:

1. Waiting or Testing : In this step the component asks for the state of the input
port, whether signaled or not. To do so it may act in two ways, either waiting or
testing:

• Waiting : Corresponds usually to the situation in the inner loop of the com-
ponent kernel of figure 3.14, when a component, the receiver, blocks waiting
for an incoming port packet through any of its input ports. Note that, in
this way, the component can be blocked waiting in case of the port has not
been signaled.

• Testing : The component just tests if the input port is signaled. In case
of not being signaled the component does not get blocked, it can continue
execution, so it is a non-blocking operation.

3.5. Inter Component Communications 69

3

3

3

2

2

2

input port

internal packet input packet

ns

RECEIVER
SIDE time

input port

internal packet input packet

ns

non signaledswapping

input port

internal packet input packet

signaled

s

acquisition

and reading
(a reference)

waiting

testing
or

unsignaling

output packet

output port

output packet

output port

output packet

output port

SENDER
SIDE

port connection

port connection

port connection

Figure 3.18: Passive reception (PR).

Signaling of the input port by means of any of the active sending mechanisms
implies that the input port would end up as the first situation shown in figure
3.18, just after the sending steps of figures 3.16 and 3.17. A new packet has been
swapped or copied in the internal packet, and the input port has been signaled.

2. Unsignaling : A waiting or testing operation on a signaled input port returns
changing its state from signaled to non signaled. Atomically the passive reception
mechanism swaps the internal packet and the input packet as well. Thus, in this
way the data packet transferred by the sender will be now available for the receiver
in the input packet.

3. Acquisition and Reading : Finally, to access the input packet, the receiver acquires
a reference and reads it.

Note that the use of double buffering in the input port, using two packets, the
internal packet and the input packet, minimizes synchronization when active sending
mechanisms and passive sending are simultaneous, due to the fact that the critical
section is only hold along the duration of a swapping of pointers or references. Once
both packets have been swapped, the receiver can freely access to the information
without worrying about synchronization issues.

The passive reception ICC mechanism is said to be passive, because once the
receiver wakes up, it has the transferred information on its scope. In this way, just
swapping packets, it can access the incoming packet. It can keep using that packet
until it blocks to wait for another packet, and gets waken up again. Take into account

70 Chapter 3. CoolBOT Fundamentals

that keeping separated, by means of double buffering, the packet that is written (or
swapped) by senders from the packet that is read by the receiver, uncouples senders
from receivers making their internal working completely asynchronous.

Lastly, it is important to highlight that the combination of active sending mech-
anisms with passive sending allows for a type of interaction among components where
senders, the producers, have the initiative in the communication, they are the active
entities that complete the transferring of information into the scope of receivers, the
consumers, which are the passive counterparts in this combination of ICC mechanisms.

3.5.1.2 Passive Sending (PS) and Active Reception (AR)

The combination of a passive sender with an active receiver to inter communicate two
components is achieved with the combination of another two ICC mechanisms: passive
sending and active reception, displayed in figures 3.19 and 3.20 respectively.

non signaled

acquisition
(a reference)

2

data
writing

RECEIVER
SIDE

SENDER
SIDE

port connection
ns

input port

input packet

port connection

input port

input packet

s

signaled

port connection
ns

input port

input packet

4

output port

read packet

2 31

written packet

output packet

output port

read packet

3

written packet

output packet

swapping

time

output port

read packet

2 3

written packet

output packet

sending

4

4

Figure 3.19: Passive sending (PS).

Similarly to active sending and active sending with copy, the ICC mechanism
passive sending (PS) shown in figure 3.19 consists of three sequential steps:

• Acquisition: The sender asks the output port for an output packet to place the
information that will be sent through the port connections where the output port
takes part into. The sender gets a reference to the packet.

• Data Writing : Next, the sender writes the information that must be transmitted
using the reference previously acquired.

3.5. Inter Component Communications 71

• Sending : The sending of the packet consists of two actions:

1. Firstly, the swapping of the output packet with an internal packet, labelled
“written packet”, inside the output port where the information to be sent
will be kept.

2. Secondly, all input ports connected to the output port will be signaled to
indicate that the sender has a new packet ready. Observe that the packet is
still held in sender scope inside the output port.

Figure 3.20 displays the sequential steps that make up the active reception (AR)
ICC mechanism. Analogously to the passive reception mechanism, it is formed by three
steps:

output port

2 3

read packetwritten packet

output packet

output port

2 3

read packetwritten packet

output packet

3
port connection

input port

input packet

SENDER
SIDE

RECEIVER timeSIDE

ns

port connection

input port

input packet

signaled

port connection

input port

input packet

ns

non signaled

s

acquisition

and reading
(a reference)

waiting
or

testing

unsignaling

4

4

output port

2

read packetwritten packet

output packet (1) swapping

(2) copy

Figure 3.20: Active reception (AR).

• Waiting or Testing : Similarly to the waiting and testing steps of a passive re-
ception in figure 3.18, an active reception can perform a waiting or a testing
operation on the input port to find out whether it is signaled or not. Just at the
moment of having the input port signaled by a passive sending, the last situation
illustrated in figure 3.19, the input port changes and ends up as it is shown in
figure 3.20.

• Unsignaling : The unsignaling just returning from a waiting or a testing operation
on the input port, consists only in the change of the input port´s state from
signaled to non signaled.

72 Chapter 3. CoolBOT Fundamentals

• Acquisition and Reading : Whenever a passive sending mechanisms is applied
on the input port, the input port registers internally that its internal packet,
labelled “input packet” in the figure is updated with respect to its counterpart at
the other end of the connection, the packet labelled “read packet” in the output
port. In case that the input packet has not yet been updated since the last port
signalization, the receiver carries out the following actions in the output port:

1. Swapping : Whether the “read” packet has not been updated with the last
“written” packet, modified by the last passive sending, both packets get
swapped by the receiver. Otherwise, if the “read” packet is up to date,
nothing is done.

2. Copying : The receiver makes a copy of the “read” packet into the input
packet of the input port, at the other end of the connection, getting in this
way the information emitted by the sender.

Once the information is available as an input packet, the receiver acquires a
reference to it, and reads the information.

In case of having an up-to-date input packet in the input port, actions in the
output port would not be necessary, in this situation the receiver gets just a
reference to the input packet and reads it.

Notice that to carry out an active reception the receiver may need to access
the output port at the other end of the connection, to access the packet transferred
by the sender; this explains why in figures 3.19 and 3.20 the arrows labelled “port
connection” are bidirectional. Note also that a receiver may make use of the active
reception mechanism without utilizing the steps of waiting or testing and unsignaling
previously mentioned. The active reception mechanism can be used only applying
the last step of acquisition and reading, observe that in this case, the receiver acts
differently depending on if the internal packet in the input port is up-to-date or not.

The combination of passive sending and active reception mechanisms has been
devised to allow a sender to send information to multiple receivers with minimum
synchronization costs. That is mainly the reason of using triple buffering in the sender
side as it can be observed on figures 3.19 and 3.20. Using triple buffering the only
critical section that the sender must go through is the swapping of the output and
“written” packets in the output port during the sending step. It does not matter if
simultaneously, there are readers accessing the port and copying the “read” packet.
The sender does not need to wait blocked on a critical section, or on a mutex while
there are receivers reading the output port, because the writer section, the “written”
packet, is separated from the readers section, the “read” packet.

Thus, passive sending implies minimum synchronization costs for the sender, on
the contrary, the receivers connected to the output port are responsible for transferring
the information to their own scopes when they decide to do it, by means of active
receptions. Not only they have to update their input packets when necessary, but they
have also to update the “read” packet in the output port when it is needed as well.

3.5. Inter Component Communications 73

For this reason, in this combination of ICC mechanisms it is said that the receiver is
active. Receivers do the most costly work in terms of synchronization, swapping and
copying of packets, if needed. Anyway, observe that using this combination of ICC
mechanisms, copies are minimized and controlled transparently in a attempt to follow
faithfully the cache motto.

3.5.1.3 Signal Sending (SS) and Signal Reception (SR)

Signal sending (SS) and signal reception (SR) constitute the combination of ICC mech-
anisms that carries out the simplest form of interaction between components, just the
occurrence or signaling of an event.

The signal sending mechanism is depicted in figure 3.21, it consists of only one
step:

• Signaling : Whenever the sender wants to communicate to other components
the occurrence of an event, it can do so by means of signaling the output port.
Signaling the output port means that all input ports sharing a connection with
the signaled output port will change their state to signaled as well, as it is shown
in figure 3.21

SENDER
SIDE

RECEIVER
SIDE

port connection

input port

port connection

input portoutput port

output port
s

ns

non signaled

signaled

signaling

time

Figure 3.21: Signal Sending (SS).

The complementary ICC mechanism in the receiver side for a signal sending
is a signal reception. Figure 3.22 displays how the signal reception ICC mechanism
comprises two steps:

• Waiting or Testing : This step, similar to that of previous reception mechanisms
of figures 3.18 and 3.20, occurs when the receiver is carrying out a waiting or a
testing operation on the input port to know if it is signaled or not. As depicted
in figure 3.22, after a signal reception mechanism the port ends up in a signaled
state.

• Unsignaling : Once an input port is signaled by a signal sending, any waiting or
testing operation on it will change its state from signaled to non signaled again.

74 Chapter 3. CoolBOT Fundamentals

SENDER
SIDE

RECEIVER
SIDE

port connection

input port

ns

non signaled

port connection

input portoutput port

output port

s

signaled

waiting

time

unsignaling

or
testing

Figure 3.22: Signal Reception (SR).

3.5.1.4 Shared ICC Mechanisms

According to figure 3.15 there are four “shared” ICC mechanisms: sender shared writ-
ing (SSW), receiver shared reading (RSR), sender shared reading (SSR) and receiver
shared writing (RSW). These mechanisms implement the model of shared memories
for processes and threads utilized in multiple operating systems.

In CoolBOT an object which is shared by several components resides in an
output port in the form of a port packet called shared packet as figures 3.23, 3.24, 3.25
and 3.26 illustrate. The shared packet, besides of being a port packet, supports a set
of writing and reading operations which are user-defined. In general, objects shared
between components using these ICC mechanisms are referred to as shared packets,
and each type has its own writing and reading operations which are defined during its
design by component developers/users.

The four shared ICC mechanisms CoolBOT provides guarantees that given a
shared packet, multiple reading operations can be carried out on it simultaneously,
whenever these readings operations belong to the set of reading operations the port
packet accepts. On the contrary, any writing operation constitutes a critical section,
so the mechanisms prevent the execution of any other operation, whether reading or
writing, at the same time. All writing and reading operations must belong to the sets
of writing and reading operations the shared packet has been designed to accept. In
the following each one of these mechanisms is presented.

Figure 3.23 shows the sender side mechanism sender shared writing (SSW), it
consists of two steps:

• Acquisition: As in other mechanisms already studied, in this step the sender just
asks for a reference, in this case a reference to the shared packet stored internally
in one of its output ports.

• Writing : This is the realization of a writing operation on the shared packet by
means of the previously acquired reference. It is synchronized in such way that
it prevents other readers or writers to do any operation on the packet. At the

3.5. Inter Component Communications 75

ns

input port non signaled

1
acquisition

(a reference)

input port

s

signaled

RECEIVER
SIDEtime

writing
operation

shared packet

output port

shared packet

output port

SENDER
SIDE

port connection

port connection

Figure 3.23: Sender shared writing (SSW).

same time all input ports connected to the output port will be signaled.

When an input port is signaled by way of a sender shared writing, besides of
being signaled, it stores which writing operation was carried out on the shared packet
at the other end of the connection. The aim of signaling input ports in figure 3.23 is to
provide receivers with means to know when the shared packet is updated or written,
and which written operation was done on them.

Receivers can read the shared packet by means of connected input ports using
the receiver shared reading (RSR) ICC mechanism displayed in figure 3.24. The steps
that usually conform this mechanism are explained as follows:

• Waiting or Testing : Similarly to the previous mechanisms passive reception, ac-
tive reception and signal reception, a waiting or a testing operation permits to
know whether an input port is signaled or not. The figure 3.24 illustrates the sit-
uation just after a writing operation has been carried out on the shared packet at
the other end of the port connection, and the input port remains, thus, signaled.

• Unsignaling : Just returning from a waiting or testing operation in a signaled
input port, the port is set again to non signaled state. Besides, the receiver can
also retrieve information about which writing operation originated the signaling.

• Reading : The last step consists in doing a reading operation on the shared packet
at the output port. It can be simultaneous with other readings realized by other
components.

The first two steps can be avoided if the receiver is not interested in blocking
and waiting until the shared packet gets written. The mechanism of figure 3.24 is
the typical one when the receiver does not want to do polling and waste CPU time
unnecessarily. The input port keeps internally (the port connection) a reference to the
output port keeping the shared packet, so it can do a reading operation when needed.

76 Chapter 3. CoolBOT Fundamentals

input port

RECEIVER
SIDE time

ns
reading

input port

input port

ns

non signaled

s

signaled

waiting

operation

unsignaling

or
testing

output port

shared packet

shared packet

output port

shared packet

SENDER
SIDE

output port

port connection

port connection

port connection

Figure 3.24: Receiver shared reading (RSR).

A sender can also do a reading operation on the shared packet in its own output
port using the sender shared reading (SSR) ICC mechanism displayed in figure 3.25.
Bear in mind that the shared packet is inside the output port, and even the sender can
not access it freely. It must synchronize its access, since there may be other writers
accessing it. The sender shared reading ICC mechanism allows for this situation.
Sender shared reading is divided in two sequential steps:

• Acquisition: The component asks for a reference to the shared packet of the
output port, and acquires it.

• Reading : In this state, the component carries out a reading operation using the
reference.

Similarly to senders, receivers can perform writing operations on the shared
packet of an output port to which they can be connected, they can do that using the
receiver shared writing (RSW) ICC mechanism of figure 3.26. It consists of two steps:

• Acquisition: The component asks for a reference to the shared packet of the
output port through the port connection.

• Writing : In this state, the component carries out the writing operation using the
reference. As with sender shared writing input ports connected to the output
port with the shared packet are signaled storing which writing operation was
exerted on it as well.

3.5. Inter Component Communications 77

acquisition
(a reference)

input port

RECEIVER
SIDEtime

input port

ns

ns

non signaled

reading
operation

SENDER
SIDE

shared packet

output port

shared packet

output port

port connection

port connection

Figure 3.25: Sender shared reading (SSR).

acquisition
(a reference)

1

input port

s

signaled

RECEIVER
SIDE

ns

input port non signaled

time

writing
operation

port connection

SENDER
SIDE

output port

shared packet

output port

shared packet

port connection

Figure 3.26: Receiver shared writing (RSW).

In general, a sender should be a writer and receivers only readers. The sender
shared writing and receiver shared reading ICC mechanisms should be used in this case.
But, in some situations when components share complex and large data structures
which may be accessed indistinctly for writing and reading, it might be convenient
to share memory in a way where the difference between writers and readers it is not
so clear. It is for these situations that, these last two mechanisms, sender shared
reading and receiver shared writing, have been added. All in all, these four shared
ICC mechanisms (SSW, RSR, SSR and RSW) permit components to share memory by
means of port connections, where any of them can be a writer or a reader, and above
all, without the necessity of worrying about synchronization issues to do so.

78 Chapter 3. CoolBOT Fundamentals

3.5.2 Port Connections

According to what has been presented previously, CoolBOT components inter commu-
nicate by means of port connections formed by output ports and input ports. Remem-
ber that a port connection between an output port and an input port is only possible
whether both ports match the type of port packets they accept. Besides, it is necessary
that they also use internally valid combinations of sender side and receiver side ICC
mechanisms (figure 3.15).

Output Ports
Name Symbol Basic ICC Mechanisms
OTick t−−−−−−→ SS

OGeneric g−−−−−−→ AS, ASC

OPoster p−−−−−−→ PS

OMultiPacket mp−−−−−−→ AS, ASC

OLazyMultiPacket lmp−−−−−−→ AS, ASC

OPriority pr−−−−−−→ AS, ASC

OShared s−−−−−−→ SSW, SSR

OPull pu−−−−−−→ AS, ASC, PR

Table 3.3: Output port types.

More specifically, output ports and input ports will be compatible depending
on what internal structure they have, and on which type of ICC mechanisms they use
internally. Table 3.3 enumerates the eight types of output ports supported by Cool-
BOT, their symbology and the sender side ICC mechanisms each one uses internally
(observe that the OPull output port uses also one receiver side ICC mechanism – PR).
There are nine types of input ports as well. Table 3.4 resumes them, their symbology
and the receiver side ICC mechanisms they utilize (notice that the IPull input port
uses also sender side ICC mechanisms – AS and ASC).

Figures 3.27 and 3.28 show the different types of port connections supported by
CoolBOT according to their type, given that the ports involved match the port packets
they accept. In this figure it is also indicated below the arrows, the cardinality of each
type of port connection. Next paragraphs will explain each one in more detail.

OTick−−−−−−−−−−−−−−→
n m

ITick OShared−−−−−−−−−−−−−−→
1 m

IShared

OGeneric−−−−−−−−−−−−−−→
n m

ILast OMultiPacket−−−−−−−−−−−−−−→
n m

IMultiPacket

OGeneric−−−−−−−−−−−−−−→
n m

IFifo OLazyMultiPacket−−−−−−−−−−−−−−→
n m

IMultiPacket

OGeneric−−−−−−−−−−−−−−→
n m

IUFifo OPriority −−−−−−−−−−−−−−→
n 1

IPriorities

OPoster−−−−−−−−−−−−−−→
1 m

IPoster OPull −−−−−−−−−−−−−−→
1 n

IPull

Figure 3.27: Port connections (n,m ∈ N; n,m ≥1).

3.5. Inter Component Communications 79

Input Ports
Name Symbol Basic ICC Mechanisms
ITick t−−−−−−→ SR

ILast l−−−−−−→ PR

IFifo f−−−−−−→ PR

IUFifo uf−−−−−−→ PR

IPoster p−−−−−−→ AR

IMultiPacket mp−−−−−−→ PR

IPriorities pr−−−−−−→ PS

IShared s−−−−−−→ RSW, RSR

IPull pu−−−−−−→ PR, AS, ASC

Table 3.4: Input port types.

OMultiPacket−−−−−−−−−−−−−−→
n m

ILast OLazyMultiPacket−−−−−−−−−−−−−−→
n m

ILast

OMultiPacket−−−−−−−−−−−−−−→
n m

IFifo OLazyMultiPacket−−−−−−−−−−−−−−→
n m

IFifo

OMultiPacket−−−−−−−−−−−−−−→
n m

IUFifo OLazyMultiPacket−−−−−−−−−−−−−−→
n m

IUFifo

OGeneric−−−−−−−−−−−−−−→
n m

IMultiPacket

Figure 3.28: Simple multi packet connections (n,m ∈ N; n,m ≥1).

3.5.2.1 Tick Connections

Definition. A tick connection is an output port/input port pair formed by a tick output
port (OTick) and a tick input port (ITick). Its internal structure appears in figure
3.29.

SENDER
SIDE

RECEIVER
SIDE

input port

ns

non signaledoutput port

OTick ITicktick connection

Figure 3.29: A tick connection.

Basic ICC Mechanisms. Observing tables 3.3 and 3.4 note that the types of ports in-
volved in tick connections, ITick and OTick, use respectively signal sending (SS) and
signal reception (SR).

Port Packet Types. Tick connections do not transport port packets.

Cardinality. Notice the cardinality of tick connections in figure 3.27, tick output ports
and tick input ports can be involved in multiple tick connections.

80 Chapter 3. CoolBOT Fundamentals

Functionality. These are the simplest port connections provided by CoolBOT. Tick
connections are mainly utilized to communicate the occurrence of events between com-
ponents.

Signaling/Unsignaling. As displayed in figure 3.21, a tick input port, ITick gets signaled
when a SS is applied on it. Once signaled, the input port keeps this state until a testing
or waiting operation is exerted on it, as in a SR in figure 3.22.

3.5.2.2 Last Connections

Definition. A last connection is an output port/input port pair formed by a generic
output port (OGeneric) and a last input port (ILast). Figure 3.30 depicts the internal
structure of the port types that make up last connections.

input port

internal packet input packet

ns

non signaled

RECEIVER
SIDE

ILastOGeneric

output port

output packet

SENDER
SIDE

last connection

Figure 3.30: A last connection.

Basic ICC Mechanisms. The types involved in this type of port connections, OGeneric
and ILast, use the ICC mechanisms of active sending (AS) or active sending with copy
(ASC), and passive reception (PR) respectively, as shown in tables 3.3 and 3.4.

Port Packet Types. Ports involved in last connections, OGeneric and ILast, should
match the type of port packet they transmit, each one may only be associated with
one type of port packet.

Cardinality. Figure 3.27 illustrates clearly that the cardinality of this kind of connec-
tions is n → m, so OGeneric and Ilast ports can be involved simultaneously in several
last connections.

Functionality. Last connections constitute the simplest type of port connections that
utilize AS, ASC and PR, since that the input and output ports that conforms them
use the minimal internal structure necessary to implement such ICC mechanisms, as
figures 3.16, 3.17 and 3.18 depict.

Signaling/Unsignaling. An Ilast input port is signaled when a sender exerts on it an
active sending mechanism, either an AS or an ASC. It will hold its signaled state until
a PR is applied on it, what would imply a testing or waiting operation which will
change its state to non signaled.

3.5. Inter Component Communications 81

3.5.2.3 FIFO Connections

Definition. A fifo connection is an output port/input port pair formed by a generic
output port (OGeneric) and a fifo input port (IFifo). Figure 3.31 displays the internal
structure of the port types that conform fifo connections.

....

internal packets

non signaled

ns
....
....5431 2

input packet

input port

OGeneric IFifo

RECEIVER
SIDE

output port

output packet

SENDER
SIDE

fifo connection
k

Figure 3.31: A fifo connection.

Basic ICC Mechanisms. According to tables 3.3 and 3.4 generic output ports and fifo
input ports, OGeneric and IFifo, use active sending (AS), active sending with copy
(ASC) and passive reception (PR) respectively to transfer port packets through the
fifo connection. They use the same basic ICC mechanisms than last connections.

Port Packet Types. Likely last connections, ports taking part into fifo connections,
OGeneric and IFifo, may be only associated with one type of port packet, and types
admitted by both should match to form a connection.

Cardinality. The cardinality is n → m according to figure 3.27.

Functionality. Fifo input ports (IFifo) have several internal packets as appears in figure
3.31. In fact, it uses an array of internal packets that constitutes a first-in-first-out
(fifo) structure or queue with a specific length (k in the figure). Concretely, an active
sending, an AS or an ASC, means an insertion of a packet in the internal fifo. Similarly,
a passive reception, an PR, signifies an extraction from the queue.

So, any active sending exerted on the fifo input port will be applied to the
next available packet in the queue, if any. If the fifo is full, then the active sending will
utilize the oldest packet, overwriting or swapping it with the new one. In the same way,
any passive reception applied to it will extract the front packet, the oldest one, from
the internal fifo. Namely, a passive reception will exchange the port´s input packet and
the front packet (the oldest inserted one) of the internal fifo.

Signaling/Unsignaling. A fifo input port, IFifo, will be non signaled if its internal queue
is empty, and will be signaled if this queue is not empty. In this way, a non signaled
fifo input port will change its state to signaled, if any packet is inserted in it by means
of the application of an AS or an ASC on it. In the same way, a signaled fifo input
port will become non signaled when it gets empty by the application of some PRs on
it.

82 Chapter 3. CoolBOT Fundamentals

3.5.2.4 Unbounded FIFO Connections

Definition. An unbounded fifo connection is an output port/input port pair formed by a
generic output port (OGeneric) and an unbounded fifo input port (IUFifo). Internally,
an unbounded fifo connection has the same internal structure that fifo connections, as
it appears in figure 3.31

Basic ICC Mechanisms. Tables 3.3 and 3.4 indicate that ports involved in unbounded
fifo connections use the same basic ICC mechanisms that last and fifo connections.

Port Packet Types. As with ports forming last and fifo connections, ports taking part
into this type of connections, OGeneric and IUFifo, only admit one type of port packet.

Cardinality. They have the same cardinality that last and fifo connections.

Functionality. According to figure 3.31, unbounded fifo connections have the same struc-
ture that fifo connections. The only difference is that the length of the input port´s
internal fifo grows when it is full, and any insertion, an AS or an ASC, is applied on it.

Signaling/Unsignaling. IUFifo input ports get signaled and non signaled in the same
conditions that IFifo input ports.

Supplementary Comments. It is interesting to note that last, fifo and unbounded fifo
connections are essentially equivalent in terms of functionality, because they differs
only in the length of the internal fifo that is hold in the receiver side of the connection.
Thus, last connections keep a fifo of packets of length 1, for fifo connections the fifo has
a specific length k, and unbounded fifo connections allows a length which is variable.
Therefore they all are fifo connections, the reason of having three specialized types is
mainly due to performance reasons.

Finally, it is important to observe that the cardinality of these three types of
connections is n → m (have a look at figure 3.27). Hence, OGeneric, ILast, IFifo and
IUFifo ports may be involved in multiple connections simultaneously. It is also signifi-
cant that OGeneric output ports can form simultaneously last, fifo and unbounded fifo
connections.

3.5.2.5 Poster Connections

Definition. A poster connection is an output port/input port pair formed by a poster
output port (OPoster) and an poster input port (IPoster). The internal structure of
poster connections appears in figure 3.32.

Basic ICC Mechanisms. Observe in figure 3.32 that triple buffering is used in the sender
side, the poster output port (OPoster); this is due to the types of ports involved in this
kind of connections, OPoster and IPoster, that use respectively the passive sending
(PS) and active reception (AR) ICC mechanisms illustrated in figures 3.19 and 3.20.

3.5. Inter Component Communications 83

1

3

2

4

1

3

2

4

1

3

2

4

SENDER

output port input port

ns

non signaled

IPoster

...
.

...
.

...
.

poster connection

read packets input packets

SIDE
RECEIVER

SIDE

written packets

OPoster

output packet

kk k

Figure 3.32: A poster connection.

Port Packet Types. Poster ports, OPoster and IPoster, may be only associated with
one type of port packet. Like previous types of connections (except tick connections),
they can form a poster connection if the port packet types they transmit match each
other.

Cardinality. The cardinality is 1 → m, so poster input ports, IPoster, can only be
involved in one poster connection. However, OPoster ports can form multiple connec-
tions simultaneously.

Functionality. As shown in figure 3.32, poster output and input ports are internally
constituted by arrays of packets of a specific length (k in the figure). When PSs or
ARs are applied on the connection, respectively in the sender or receiver sides, each
ICC mechanism affects only one packet on each array, in other words, the mechanisms
are applied in a per-index basis. Thus, a PS applied on the output packet i of the
output port will affect packet i of the internal packets, and will signalize through the
connection that the packet i has been updated. Similarly, an AR in the receiver side on
the input packet i of the input port will affect only that packet, and its corresponding
internal packet i at the other end of the connection.

Signaling/Unsignaling. A poster input port (IPoster) is non signaled whether all input
packets in the array it keeps internally, are non signaled. The IPoster is signaled if any of
these input packets is signaled. Remember that testing and waiting operations carried
out along AR mechanisms, modify the state of the different packets from signaled, if
any, to non signaled, and on the contrary, PS mechanisms make packets signaled.

Supplementary Comments. The rationale of poster connections is to allow for patterns
of communication where there are one producer and one or more consumers (one sender
and multiple receivers, cardinality 1 → m in figure 3.27), and it is important to avoid
high synchronization costs on the sender side. This type of port connection has been
inspired by the poster construct that is used in GenoM [Fleury et al., 1997] to inter
communicate modules.

84 Chapter 3. CoolBOT Fundamentals

3.5.2.6 Shared Connections

Definition. A shared connection is an output port/input port pair formed by a shared
output port (OShared) and a shared input port (IShared). Figure 3.33 displays the
internal structure of this type of connections.

input port

RECEIVER
SIDE

shared packet

output port

SENDER
SIDE

ns

non signaled

OShared IShared
shared connection

Figure 3.33: A shared connection.

Basic ICC Mechanisms. Tables 3.3 and 3.4 indicate that the basic ICC mechanisms
used in shared connections are: sender shared writing (SSW), receiver shared reading
(RSR), sender shared reading (SSR) and receiver shared writing (RSW). Remember
from section 3.5.1.4 that the use of these ICC mechanisms implies that the shared
output port taking part in the connection, contains the shared object. This object
is a shared packet, a port packet that accepts by design a set of several writing and
reading operations. Remember also that only these operations are guaranteed by the
shared ICC mechanisms to be carried out without corruption of the shared object due
to simultaneous accesses. Thus, using such mechanisms several writers and several
readers can share the same information using shared connections involving the same
output port.

Port Packet Types. Shared output and input ports, OShared and IShared admit each
one only one type of port packet. Port packet types at both ends of a shared connection
should match to form a valid connection.

Cardinality. Shared input ports, IShared, may take part only into one port connection.
On the other side, shared output ports, OShared, may form multiple connections. This
is the cardinality 1 → m appearing in figure 3.27.

Functionality. The rationale of this type of connection and the basic ICC mechanisms
that support it, is to provide a means to allow components to share memory, the
“shared packet” of figures 3.23, 3.24, 3.25 and 3.26, under the abstraction of input and
output ports.

Signaling/Unsignaling. A shared input port, IShared, gets signaled whenever a shared
writing mechanism, SSW and RSW, is performed. The input port tracks internally the
different writing operations realized on the output port to which it is connected, by
means of an internal queue (not shown in figure 3.33). The input port remains signaled
if this internal queue is not empty. The port becomes non signaled when it gets empty.

3.5. Inter Component Communications 85

Each time a testing or waiting operation is carried out in the IShared port, an element
is extracted from this signalization queue.

Supplementary Comments. Mind that shared connections have been devised to support
the well known “shared memory” model of interaction between processes and threads,
which is present in the IPC APIs of most modern operating systems. Thus, shared
connections permit sharing memory (the shared packet of figures 3.23, 3.24, 3.25, 3.26,
3.33) between components in a transparent and operating-system-independent manner.

3.5.2.7 Multi Packet Connections

Definition. A multi packet connection is an output port/input port pair formed by a
multi packet output port (OMultiPacket) and a multi packet input port (IMultiPacket).
Its internal structure is shown in figure 3.34, observe that it has an array of output
packets in the sender side at the output port, and two arrays of packets in the input
port: an array of internal packets, and an array of input packets. All of them have the
same length (k in the figure).

... ...

1

2

3

4

1

2

3

4
...

1

2

3

4

RECEIVER
SIDE

SENDER
SIDE

output port

OMultiPacket

ns

input port non signaled

output packets internal packets input packets

IMultiPacket
multipacket connection

kkk

Figure 3.34: A multi packet connection.

Basic ICC Mechanisms. The basic ICC mechanism used by multi packet connections
are active sending (AS), active sending with copy (ASC), and passive reception (PR),
that is why double buffering is used in the receiver side, according to figure 3.34.

Port Packet Types. Multi packet connections may accept several types of port packets.
Specifically, it can accept as many port packet types as elements each one of the arrays
of packets involved in a connection has (k in figure 3.34). That is the main feature of
this kind of port connection.

Cardinality. Cardinality, as in other previous connections, is n → m. In this way, multi
packet output and input ports may take part in multiple connections simultaneously.

Functionality. Multi packet can be seen as “big” last connections that pack together

86 Chapter 3. CoolBOT Fundamentals

a specific number of connections, k in figure 3.34. As with poster connections, the
basic ICC mechanisms used in multi packet connections are applied internally in a
per-index basis, affecting only the corresponding elements of a specific index in the
arrays shown in figure 3.34 at both ends of the connection. The main utility of this
type of connections is the possibility of sending different types of port packets through
the same connection.

Signaling/Unsignaling. Multi packet input ports, IMultiPacket are signaled each time
an AS or an ASC is applied on any of the packets of its internal array through any of
the connections where the port is involved. It will remain signaled whenever an internal
packet have been signaled, and no testing or waiting operation have been applied on it.
Testing and waiting operations exerted on the input port, are carried out in a per-index
basis. Returning from them will provoke the unsignaling of a specific internal packet.
The port is non signaled if all its internal packets are non signaled.

Supplementary Comments. It is possible to connect individually specific elements of
the output array of packets at the OMultipacket output port, to individual elements of
the internal array of packets at the IMultipacket output port. The cardinality is also
n → m, as indicated in figure 3.27.

3.5.2.8 Lazy Multi Packet Connections

Definition. A lazy multi packet connection is an output port/input port pair formed
by a lazy multi packet output port (OLazyMultiPacket) and a multi packet input port
(IMultiPacket). It has the same internal structure that multi packet connections, as
shown by figure 3.34. Lazy multi packet connections and multi packet connections
differs exclusively in the type of output port that forms each one, OLazyMultiPacket
and OMultiPacket respectively.

Basic ICC Mechanisms. Lazy multi packet connections use the same basic ICC mech-
anisms that multi packet connections: AS, ASC and PR (tables 3.3 and 3.4).

Port Packet Types. Lazy multi packet connections accept several types of port packets
in the same terms that multi packet connections.

Cardinality. They also have the same cardinality that multi packet connections, n → m
(figure 3.27).

Functionality. In terms of functionality, the only difference between lazy multi packet
and multi packet connections is the behavior of the output port whose type is OLazy-
MultiPacket. An OLazyMultiPacket port does not carry out the sending of packets
through the connection when ASs or ASCs are applied on it. It “accumulates” in-
ternally the different “sent” packets, and postpones their sending until a “flushing”
operation is applied on the output port. This flush operation is specific to this type of
output ports; thus, all sending steps of figures 3.16 and 3.17, corresponding to previous
ASs or ASCs since the last flush operation, are delayed until a new flush operation is

3.5. Inter Component Communications 87

exerted on the output port.

Signaling/Unsignaling. Obviously, due to the fact that the receiver side of this type
of connections has the same type of input port that multi packet connections, IMulti-
Packet, the situations to be signaled and non signaled are equivalent.

Supplementary Comments. As with multi packet connections, in lazy multi packet con-
nections it is possible to connect individually any of the output packets at the OLazy-
Multipacket output port, to any of the internal packets at the IMultipacket output
port. In the same way, the cardinality is also n → m, as appears in figure 3.27.

3.5.2.9 Priority Connections

Definition. A priority connection is an output port/input port pair formed by a priority
output port (OPriority) and a priority input port (IPriorities). The internal structure
of priority connections is depicted in figure 3.35.

...
1

2

3

4

1

2

3

4

RECEIVER
SIDE

SENDER
SIDE

ns

input port non signaled

internal packets input packets

priority connection
OPriority

output port

output packet

IPriorities

priority levels

... ...
kk

Figure 3.35: A priority connection.

Basic ICC Mechanisms. Priority connections make use of the basic ICC mechanisms:
active sending (AS), active sending with copy (ASC), and passive reception (PR).
Observe again the double buffering at the receiver side in figure 3.35.

Port Packet Types. Each part in a priority connection accepts only one type of port
packet, and the types should match at both ends, the sender and the receiver sides, to
form a valid priority connection.

Cardinality. Priority output ports, OPriority, can only take part into one connection,
on the contrary, priority input ports, IPriorities may admit multiple connections si-
multaneously. This is the sense of cardinality n → 1 in figure 3.27.

Functionality. Priority input ports, IPriorities, admit multiple connections at different
levels of priority (k levels in figure 3.35). The number of priority levels is specific of
each IPriorities port, and it is determined at instantiation time. Priority output ports,

88 Chapter 3. CoolBOT Fundamentals

OPriority, can connect to only one level of priority. Therefore, ASs and ASCs exerted
on an OPriority will only affect the level of priority to which it is connected.

Signaling/Unsignaling. Any AS or ASC mechanism applied on an OPriority involved in
a priority connection, will signalize the IPriorities port at the specific level of priority
where the output port is connected. Each level of priority has associated a time of
persistence that indicates how long a level of priority remains signaled at maximum
if no new ASs or ASCs are applied on it. Furthermore, the level of priority can be
masked and unmasked individually. Thus, the whole port will be signaled if any of
its levels of priority which is not masked, is signaled. Similarly to other input ports,
testing and waiting operations will turn IPriorities input ports non signaled. In fact,
they remain signaled until all their levels of priority get non signaled by either the
application of these operations, or by the expiration of the persistence time for all
their levels of priority. Testing and waiting operations exerted on a IPriorities port
return always indicating the highest priority which was signaled.

3.5.2.10 Pull Connections

In CoolBOT there are two basic communication models for port connections:

• Push Model. In a push connection the initiative for sending a port packet relies on
the output port part; that is, the data producer (the sender) sends port packets
on its own, completely uncoupled from its consumers (the receivers).

• Pull Model. A pull connection implies that packets are emitted when the input
part of the communication, the consumer (the receiver), demands new data to
process. In this model the consumer keeps the initiative, sending a request to the
producer (the sender) whenever a new port packet is demanded.

All connections that have been introduced so far, observe the push communica-
tion model, thus, all of them constitute push connections, and they allow uncoupled
interaction of components. However, in multiple cases, it is necessary a pull communi-
cation model. CoolBOT provides a pair of output/input ports, named pull connections,
that allows for this kind of interaction.

Definition. A pull connection is an output port/input port pair formed by a pull output
port (OPull) and a pull input port (IPull). The internal structure of pull connections
is illustrated in figure 3.36.

Basic ICC Mechanisms. Active sending (AS), active sending with copy (ASC) and pas-
sive reception (PR) are the basic ICC mechanisms used by pull connections. These
mechanisms are utilized to communicate the components in both directions, from the
receiver to the sender for the requests, and from the sender to the receiver for the an-
swers. That is the reason of having double buffering at both sides of pull connections,
as it is shown in figure 3.36.

3.5. Inter Component Communications 89

1

2

3

4

1

2

3

4

1

2

3

4

ns

internal packet input packet

non signaled

request packetinput port

SENDER
SIDE

RECEIVER
SIDE

...

OPull IPull

... ...

ns

non signaled output port
internal packets

request packets

output packets

pull connection i
m m

m

Figure 3.36: A pull connection.

Port Packet Types. Pull connections distinguish two types of port packets: one type
for request packets, and another type for the answers, both types should match at both
ends of a connection to establish a valid pull connection.

Cardinality. Pull output ports, OPull, can take part into multiple pull connections. In
fact, corresponding items on each one of the arrays in the OPull output port in figure
3.36, are associated with one pull connection. Each pull input port, IPull, may only be
connected to a one pull output port, “pull connection i” in the figure. This explains
the cardinality 1 → m which appears in figure 3.27.

Functionality. OPull output ports can manage multiple connections simultaneously, in
this way, a sender can accept requests from multiple receivers. Therefore pull connec-
tions model a typical request/answer model of interaction between one producer, the
sender, and multiple consumers, the receivers. Although in figure 3.36 the length of
the internal arrays at sender side is m, OPull output ports change dynamically their
length in order to accommodate all receivers to which they are connected.

Signaling/Unsignaling. Pull output ports, OPull, are signaled when they receive a
request packet by means of an AS or and ASC through any of the connections into
which it is taking part. Specifically, each connection gets individually signaled when
ASs or ASCs are applied on it. The sender applies testing and waiting operations on
the OPull to find out whether any requests have been received. Testing and waiting
operations carried out in PRs in the sender side will make connections non signaled,
and will allow knowing which requests have been received.

90 Chapter 3. CoolBOT Fundamentals

Pull input ports, IPull input ports will get signaled when answer packets are
received by means of ASs or ASCs applied through the pull connection where it is
involved. They remain signaled until a testing or waiting operation is applied on it by
means of a PR in the receiver side.

3.5.2.11 Simple Multi Packet Connections

Figure 3.27 illustrates the main types of port connections provided by CoolBOT that
have already been introduced in previous sections. Additionally, there is a set of
port connections resulting from the combination of multi packet output and input
ports (OMultiPacket, OLazyMultiPacket and IMultiPacket) with the output and input
ports involved in last, fifo and unbounded fifo connections (OGeneric, ILast, IFifo
and IUFifo). All these port connections are called collectively simple multi packet
connections. Figure 3.28 shows all the possibilities.

Definition. Simple multi packet connections are defined as the pairs of output ports/in-
put ports that appear in figure 3.28. Snapshots of their internal structure are shown
in figures 3.38 and 3.37. The internals of simple multi packet connections resulting
from the combinations of OMultiPacket and OLazyMultiPacket with ILast, IFifo and
IUFifo are functionally equivalent to figure 3.37.

...

1

2

3

4

RECEIVER
SIDE

SENDER
SIDE

output port

OMultiPacket

output packets

ns

input port non signaled

ILast

internal packet input packet

multipacket connection i
simple

k

Figure 3.37: A simple multi packet connection combining an
OMultiPacket and an ILast.

Basic ICC Mechanisms. Simple multi packet connections are possible due to the fact
that the output and input ports involved in them, make use of the same compatible
ICC mechanisms: AS and ASC in the output ports, and PR in the input ports (see
tables 3.3 and 3.4). Besides, these ports have the same semantics of use. Notice that
priority input and output ports (OPriority and IPriorities) use also the same type of
ICC mechanisms, but due to the fact that their semantics of priorities are different,
they can not be combined with other types of input and output ports. The same
happens with pull output and input ports (OPull and IPull).

3.6. Component Composition 91

...

1

2

3

4

...

1

2

3

4

RECEIVER
SIDE

SENDER
SIDE

ns

input port non signaled

internal packets input packets

IMultiPacket

output port

output packet

OGeneric
multipacket connection i

simple

kk

Figure 3.38: A simple multi packet connection combining an OGeneric
and an IMultiPacket.

Port Packet Types. Observing figures 3.28, 3.37 and 3.38 it is important to note that
simple multi packet connections implies that one of parts involved in the connection
can only accept one type of port packet. This is because OGeneric, ILast, IFifo and
IUFifo admit only one type of port packet. It is said that they are simple packet ports.
On the opposite side, OMultipacket, OLazyMultipacket and IMultipacket ports accept
multiple types of port packets and, accordingly, they are called multi packet ports. In
particular, multi packet ports admit an array of types of port packets. All in all, in
simple multi packet connections, the port connections are always carried out between a
simple packet port and one of the elements of a multi packet port. It is mandatory that
the port packet type accepted by the simple packet port matches the type accepted by
the element of the multi packet port.

Cardinality. The cardinality of simple multipacket connections is n → m (figure 3.28).
Having a look to figures 3.27 and 3.28, notice that, in this way simple packet and multi
packet ports can take part in multiple types of port connections simultaneously.

Functionality. Simple multi packet connections offer the same functionality as multi
packet and lazy multi packet connections, except that through them it is only possible
to send a port packet due to the nature of simple packet ports.

Signaling/Unsignaling. IMultipacket input ports get signaled and non signaled in the
same way that they do in multi packet and lazy multi packet connections. Similarly,
the conditions for signaling and unsignaling of ILast, IFifo and IUFifo input ports are
equivalent to the conditions they have in last, fifo and unbounded fifo connections.

3.6 Component Composition

In CoolBOT, components constitute the building blocks by means of which systems are
constructed by integration and composition. In fact, it is possible to integrate different

92 Chapter 3. CoolBOT Fundamentals

components to form compositions or aggregates of components that, once integrated,
can also be considered, in terms of composition, as components that, in turn, can be
used to take part in new bigger compositions.

CoolBOT components are classified into two kinds: atomic and compound com-
ponents. With independence of its type, components, whether atomic or compound,
are externally equivalent in terms of composition. Next sections will introduce each of
them in more detail.

3.6.1 Atomic Components

An atomic component is an indivisible component, i.e., it is not possible to split it into
other components. Therefore, an atomic component is not a composition or aggregation
of components. Atomic components have been devised to abstract hardware like sensors
and effectors, encapsulate software libraries like third party software, and to implement
specific algorithms designed to be reusable.

. . .

#inc lude ” coo lbot . h”
us ing namespace CoolBOT ;

. . .

namespace PioneerSpace
{

. . .

c l a s s Pioneer : pub l i c Component
{

pub l i c :

. . .

p r i va t e :

. . .

} ;

. . .
}

Figure 3.39: Component Pioneer : an
atomic component.

CoolBOT is a C++ framework, and every CoolBOT component, atomic or
not, is a C++ class. Atomic components participate of all concepts and abstractions
introduced so far in this chapter. Along this section, the process of building an atomic
component will be explained with the help of an example. At the same time, a more
detailed vision of how components map into C++ code will be given.

Figure 3.39 shows the first level of organization of an atomic component called
Pioneer. Observe how the component, the class Pioneer, inherits from a class called
Component. All components inherits from this class. That is the mechanism the

3.6. Component Composition 93

framework uses to endow components with a default behavior, what has been referred
to as component defaults in section 3.3. Following subsections will outline the process of
building atomic components in CoolBOT, and how concepts and abstraction introduced
so far in this chapter map into C++ code. All this will be done using the component
of figure 3.39. From now on some C++ code will be shown in order to illustrate some
framework aspects. Appendix A contains the CoolBOT programming style rules, that
could give some more insights about the code, if considered necessary.

3.6.1.1 External Interface: Input and Output Ports

The external interface of public output and input ports of the Pioneer component
appears in figure 3.40. In the figure, output and input port types are indicated by
their symbols in parentheses. Consult tables 3.3 and table 3.4 for symbols associated
respectively to output and input ports.

PIONEER

monitoring

config

sonar
positions

odometry

standard

sonars

encoder

control

laser

commands

odometry
feedback

high priority

medium priority
commands

low priority
commands

(mp)

(f)

(f)

(f)

(l)

(lmp)

(s)

(p)

(p)

(p)

(p)

(g)

(g)

Figure 3.40: Component Pioneer : external interface.

The Pioneer component of figure 3.40 adapts the ARIA library (Activ Me-
dia Robots Interface for Applications) for the Pioneer family of robots of Activ
Media Robotics. The component wraps the lowest level of functionality of ARIA
[Activ Media Robotics, 2003] as a CoolBOT component. Figure 3.41 shows one of our
Pioneer robots, in this case, it has a web camera mounted on a Directed Perception
pan-tilt placed on the top of the robot. Tables 3.5 and 3.6 resume respectively the
Pioneer component´s external interface of public output and input ports.

The code in figure 3.42 illustrates the definition of non default output and input
ports for the Pioneer component. Figure 3.43 exemplifies the instantiation of two ports
for the Pioneer component: the high priority commands output port and the sonars
input port.

As to input ports, the Pioneer component uses internally three levels of priority;
figures 3.44 and 3.45 illustrate respectively the code corresponding to the definitions
of these three priority levels, and the mapping of the component´s input ports into
each priority. Note how the high priority commands, medium priority commands, and

94 Chapter 3. CoolBOT Fundamentals

Figure 3.41: One of our Pioneer robots.

Public Output Ports
Name Brief Description
monitoring This is the default monitoring output port by means of which the

component publishes all its observable variables. It is an OLazyMul-
tiPacket.

config This is an OShared output port. It publishes configuration data of
the robot to which the component is attached.

sonar posi-
tions

Once connected to a physical robot this OPoster output port publishes
the coordinates of the different sonars the robot provides.

sonars By means of this OPoster output port the component provides robot´s
sonar readings.

standard Some additional information related to the robot is published in this
OPoster output port: bumper status, motor stall, . . .

odometry Through this OGeneric output port the component publishes period-
ically the robot´s odometry.

encoder This OPoster output port allows direct access to the motor encoders
of the robot.

laser This OGeneric output port resends information related to a SICK
laser range scanner, if the robot is equipped with one.

Table 3.5: Component Pioneer : public output ports.

3.6. Component Composition 95

Public Input Ports
Name Brief Description
control This is the component´s default control port through which Pioneer´s

controllable variables may be modified and updated. This component
does not add any new controllable variable. It is a IMultiPacket input
port.

high priority
commands

IFifo input port that accepts commands to be sent to the robot the
component is connected to. High priority input port.

medium
priority
commands

IFifo input port that accepts commands to be sent to the robot the
component is connected to. Medium priority input port.

low priority
commands

IFifo input port that accepts commands to be sent to the robot the
component is connected to. Low priority input port.

odometry
feedback

It is a ILast input port, by means of it the odometry data produced
can be affected by a correction.

Table 3.6: Component Pioneer : public input ports.

low priority commands ports are functionally equivalent, they can send the same type
of commands to the physical robot (consult [Activ Media Robotics, 2002] for more
information about these commands). The only difference between them is that they
belong to three different levels of input port priorities, the highest level corresponds
to high priority commands, and the lowest to low priority commands. This feature is
useful to prioritize some commands in specific moments of execution, for instance, an
emergency stop, a fast velocity change to avoid and obstacle, etc. Obviously, these three
ports should be used conveniently, as for instance, utilizing the highest command port,
high priority commands, when the situation really requires to run a specific command
immediately.

In the code outlined in figure 3.42, it is possible to observe that the Pioneer
component also has private output and input ports (OutputPorts and InputPorts

enumerations). Tables 3.7 and 3.8 resume briefly the use of this private output and
input ports.

Private Output Ports
Name Brief Description
to reset
odometry

OGeneric output port used to make the listening port thread to reset
the odometry published by the component.

port thread
control

OMultiPacket port to control the port threads, in this case, the Pio-
neer component has only one port thread: the listening port thread.

Table 3.7: Component Pioneer : private output ports.

The Pioneer component does not add any new controllable variable to the ones
included by default by CoolBOT with component defaults (see section 3.3). The same
happens with observable variables, as this component does not need further observable

96 Chapter 3. CoolBOT Fundamentals

variables apart from the ones provided by component defaults.

Finally, it is necessary to add that the Pioneer component does not use any
component watchdog to supervise its input ports. Neither does it need any extra timer
besides the default timer that CoolBOT provides for its internal functionality.

c l a s s Pioneer : pub l i c Component
{

pub l i c :

. . .

enum InputPorts
{

HIGH PRIORITY COMMANDS=DEFAULT INPUT PORTS,
MEDIUM PRIORITY COMMANDS,
LOW PRIORITY COMMANDS,
ODOMETRYFEEDBACK,
INPUT PORTS

} ;

enum OutputPorts
{

STANDARD=DEFAULT OUTPUT PORTS,
ODOMETRY,
SONAR POSITIONS,
SONARS,
ENCODER,
CONFIG,
LASER,
OUTPUT PORTS

} ;

. . .

p r i va t e :

. . .

enum InputPor t s
{

EXCEPTION IN LISTENING TASK = DEFAULT INPUT PORTS,
RESET ODOMETRY ,
PORT THREAD MONITORING ,
LISTENING CONTROL ,
INPUT PORTS

} ;

enum OutputPorts
{

TO RESET ODOMETRY =0,
PORT THREAD CONTROL ,
OUTPUT PORTS

} ;

. . .
} ;

Figure 3.42: Component Pioneer : input and output ports.

3.6. Component Composition 97

Pioneer : : Pioneer (const char ∗ pRobotConnection)
{

. . .

// Input port high p r i o r i t y commands : begin
ppIPorts [HIGH PRIORITY COMMANDS]=

new IF i f o (CommandPacket : : prototype () ,
COMMAND FIFO LENGTH) ;

// Input port high p r i o r i t y commands : end

. . .

// Output port sonar : begin
ppOPorts [SONARS]=

new OPoster (SonarPacket : : prototype () , 1) ;
// Output port sonar : end

. . .
}

Figure 3.43: Component Pioneer : ports
instantiation.

c l a s s Pioneer : pub l i c Component
{

. . .

p r i va t e :

. . .

enum Inpu tPo r tP r i o r i t i e s
{

LOW =0,
MEDIUM ,
HIGH ,
INPUT PORT PRIORITIES

} ;

. . .
} ;

Figure 3.44: Component Pioneer :
input port priorities.

i n t Pioneer : : p I npu tPo r tP r i o r i t i e s [INPUT PORTS+ INPUT PORTS]=
{

HIGH , / / CONTROL
HIGH , / / HIGH PRIORITY COMMANDS
MEDIUM , / / MEDIUM PRIORITY COMMANDS
LOW , / / LOW PRIORITY COMMANDS
LOW , / / ODOMETRYFEEDBACK
LOW , / / EMPTY TRANSITION
LOW , / / TIMER
HIGH , / / EXCEPTION IN LISTENING TASK
LOW , / / RESET ODOMETRY
HIGH , / / PORT THREAD MONITORING
LOW , / / LISTENING CONTROL

} ;

Figure 3.45: Component Pioneer : input port priority mapping.

98 Chapter 3. CoolBOT Fundamentals

Private Input Ports
Name Brief Description
empty transi-
tion

This is the default empty transition port explained in section 3.3.6, it
is an ITick input port.

timer This is the default port timer (section 3.3.5) used by the default timer,
it is also an ITick input port.

exception in
listening task

Through this ITick input port the listening port thread communicates
to the main one that an exception has been detected during execution.

reset odome-
try

ILast input port utilized by the listening port thread to reset the
odometry which the component publishes through the public output
port odometry.

port thread
monitoring

IMultiPacket port for observing port threads. In this specific case, the
Pioneer component has only a port thread: the listening port thread.

listening con-
trol

This is the control input port of the listening port thread. It is an
ILast input port.

Table 3.8: Component Pioneer : private input ports.

3.6.1.2 Port Packets

As already introduced in section 3.2.1, port packets are the discrete information units
that are sent and received by components through its output and input ports by means
of port connections. Like components, port packets take the form of C++ classes in
CoolBOT, and accordingly, each type of port packet is defined by a different C++
class.

The code in figure 3.46 resumes what a port packet is in CoolBOT. All port
packets must inherit from the class PortPacket that appears in figure 3.46. Port packets
are discrete data units that should be:

• Able to be cloned : it is possible to create or to instantiate a copy of any given
port packet. This is imposed by CoolBOT using an abstract class: the class
CloningInterface in figure 3.46.

• Able to be copied : it is possible to make what is called a “deep copy”
[Stroustrup, 2000] of any given port packet. This is also an abstract class in-
herited by every port packet, the class DeepCopyingInterface of figure 3.46.

• Able to be packed/unpacked : it is possible to “pack” any port packet in a string
of raw bytes, and also it is possible to “unpack” a port packet from a string
of raw bytes, given that the type of the port packet is known (this is the well-
known “serialization” interface that is found in multiple object-oriented program-
ming languages [Arnold et al., 2000] and libraries [MSDN, 2002]). This is carried
out using an abstract class as well, the class PackingInterface in figure 3.46.

CoolBOT make uses of the XDR (eXchange Data Representation) library

3.6. Component Composition 99

[Bloomer, 1992] in order to pack and unpack port packets in strings of bytes in
a machine-independent manner.

As an example, figure 3.47 shows a portion of code of a type of port packet used
by the Pioneer component. As previously commented, a port packet type is defined
as a C++ class. In the figure, it is a class called OdometryPacket which is the type
of port packet used to publish the robot odometry through the component´s odometry
output port depicted in figure 3.40.

3.6.1.3 Component Automaton

The default automaton of figure 3.8 is part of component defaults, so components
inherit it from the Component class of figure 3.39. To complete the functionality of a
component it is necessary to define what was called in section 3.3.3 the user automaton.
Figure 3.48 shows the automaton of the Pioneer component already completed. As it
can be observed the user automaton is only formed by one state called main.

The Pioneer component is an atomic CoolBOT component that uses internally
the library ARIA to control a Pioneer robot. It uses the lowest level of functionality
existing in ARIA, which consists mainly in accessing directly the functionality pro-
vided by the Pioneer 2 Operating System (P2OS) [Activ Media Robotics, 2002].
A Pioneer robot is a physical robot or a robot simulator (SRIsim provided also with
the ARIA library) that executes the P2OS. A physical robot is commanded by means
of a RS232 port, while the robot simulator uses a TCP/IP connection.

From now on, explanations will be given only referencing to a physical robot to
which the Pioneer component is connected through a RS232 connection. All comments
are applied identically to the robot simulator where the component just uses a TCP/IP

. . .

namespace CoolBOT
{

. . .

c l a s s PortPacket : pub l i c C lon ing In te r f a ce ,
pub l i c DeepCopyingInterface ,
pub l i c Pack ing In t e r f a c e

{
pub l i c :

. . .

p r i va t e :

. . .

} ;

. . .
}

Figure 3.46: The PortPacket class.

100 Chapter 3. CoolBOT Fundamentals

connection instead of an RS232 connection.

Using the serial port the P2OS communicates periodically its internal state:
bumpers, wheel velocities, wheel encoders, odometry, sonar readings, internal configu-
ration, etc. The period for sending this information through the serial port is usually
100 milliseconds, although it can be configured to be 50 milliseconds as well. The
P2OS uses the serial port also to receive any of the set of commands the robot can
accept: move forward, translational velocity, rotational velocity, maximum velocity,
reset odometry, etc. In this manner, an external computer using a Pioneer component
may control a Pioneer robot, having it attached to one of its serial ports.

The behavior of the Pioneer component is not complex. The component starts
execution trying to connect to the robot using one of the serial ports of the computer
where it is running. This is carried out in the entry section of its starting state.
Additionally, it asks for some memory in the same code section. If everything goes
well, the component transits to ready state (see figure 3.48) where it waits idle until
it is commanded to get into the user automaton. As it is shown in the figure, the
Pioneer component´s user automaton has only a state named main state. In this
state, the component is listening continuously the serial port to publish the information
that is periodically sent through the port by the robot. The component only formats
conveniently the information which it receives, and publishes it through its different
output ports (figure 3.40). At the same time, in the main state, the component is
attending all its input ports. Thus it sends to the robot any command that it receives
through its command ports, and it corrects internally the odometry that is published
when a correction is received through its odometry feedback input port. Once in main

. . .

#inc lude ” component/ coo lbo t po r tpacke t . h”
us ing namespace CoolBOT ;

. . .

namespace PioneerSpace
{

. . .

c l a s s OdometryPacket : pub l i c PortPacket
{

pub l i c :

. . .

p r i va t e :

. . .

} ;

. . .
}

Figure 3.47: An example of port packet : the
OdometryPacket class.

3.6. Component Composition 101

st
ar

tin
g

re
ad

y
en

d
de

ad

st
ar

tin
g

er
ro

r

st
ar

tin
g

er
ro

r
re

co
ve

ry
re

co
ve

ry
er

ro
r

ru
nn

in
g

er
ro

r

su
sp

en
de

d

m
ai

n

lo
w

fe
ed

−
ba

ck

od
om

et
ry

hi
gh

/m
ed

iu
m

/
lo

w
 p

ri
or

ity
co

m
m

an
ds

ok
okok

ex
ce

pt
io

n

ex
ce

pt
io

n

la
st

la
st

at
te

m
pt

at
te

m
pt

at
te

m
pt

at
te

m
pt

(∅
|t

im
er

)

(∅
|t

im
er

)

ns
r

ns
r

ns
r

ns
r
e

ns
r
e

ns
r
e

ns
s

ns
d

ns
d

ns
d

ns
d

ns
d

fin
is

h

np

np

np
np

ne
x

nc

ncncnc

F
ig

u
re

3.
48

:
C

om
p
on

en
t

P
io

n
ee

r
:

au
to

m
at

on
.

102 Chapter 3. CoolBOT Fundamentals

state, the component is running there until, either it is commanded by means of the
control port to go to one of the default automaton states, or, on the contrary, it gets
into error recovery state because an exception has been raised.

Code of figure 3.49 illustrates how states, entry and exit sections and transi-
tions are declared in the C++ code of a component. The piece of code of figure 3.50
exemplifies the typical definitions in CoolBOT for an entry section, an exit section
and a transition for an automaton state, concretely, for the main state in the Pioneer
component.

c l a s s Pioneer : pub l i c Component
{

pub l i c :

. . .

enum State s
{

MAIN=DEFAULT STATES,
STATES,
RUNNING ENTRY STATE=MAIN

} ;

. . .

p r i va t e :

. . .

// s t a t e s t a r t i n g : begin
. . .
s t a t i c i n t s t a r t i n gEn t r y (Component ∗ pComp) ;
s t a t i c void s t a r t i n gEx i t (Component ∗ pComp) ;
// s t a t e s t a r t i n g : end

. . .

// s t a t e main : begin
. . .
s t a t i c i n t mainEntry (Component ∗ pComp) ;
s t a t i c void mainExit (Component ∗ pComp) ;

s t a t i c i n t mainTimer (i n t port , Component ∗ pComp) ;
s t a t i c i n t mainExcept ionInListen ingTask (i n t port , Component ∗ pComp) ;
s t a t i c i n t mainCommands (i n t port , Component ∗ pComp) ;
s t a t i c i n t mainOdometryFeedback (i n t port , Component ∗ pComp) ;
s t a t i c i n t mainResetOdometry (i n t port , Component ∗ pComp) ;
// s t a t e main : end

. . .
} ;

Figure 3.49: Component Pioneer : automaton state declarations.

3.6.1.4 Port Threads

If it is considered necessary, components may be composed internally by several threads:
the main thread that executes the component kernel and one or more threads called
port threads, as was explained in section 3.4.1. In the particular case of the Pioneer

3.6. Component Composition 103

component, it has been estimated convenient to organize it internally into two threads:
the main thread which executes the component kernel, and a port thread, the listening
port thread. They have the following functionality:

• The main thread: This is the thread that executes the component kernel, and
makes the component evolve along its automaton. Besides, when the component
is in the main state, it is responsible for sending commands to the physical robot
using the serial port.

• The listening port thread: This port thread is only active when the component is
in the main state of the automaton, in the rest of states it is suspended (see figure
3.12). The principal functionality of this port thread is to listen to the connection
with the robot to collect the information it sends, to format it conveniently, and
then to publish it by means of the component´s output ports.

Each one of these two threads is responsible for a different subset of the output
and input ports of the Pioneer component. Figure 3.51 shows the declaration of the

. . .

// s t a t e main : begin

i n t Pioneer : : mainEntry (Component ∗ pComp)
{

Pioneer ∗ pThis=s t a t i c c a s t <Pioneer∗>(pComp) ;
pThis−> debugEntrySect ion () ;

. . .

r e turn pThis−> cu r r e n tS t a t e ;
}

void Pioneer : : mainExit (Component ∗ pComp)
{

Pioneer ∗ pThis=s t a t i c c a s t <Pioneer∗>(pComp) ;
pThis−> debugEntrySect ion () ;

. . .
}

. . .

i n t Pioneer : : mainCommands (i n t port , Component ∗ pComp)
{

Pioneer ∗ pThis=s t a t i c c a s t <Pioneer∗>(pComp) ;
pThis−> debugPortTrans i t i on (port) ;

. . .

r e turn pThis−> cu r r e n tS t a t e ;
}

. . .

// s t a t e main : end
. . .

Figure 3.50: Component Pioneer : an entry section, an
exit section, and a transition.

104 Chapter 3. CoolBOT Fundamentals

identifiers for both threads, and figure 3.52 illustrates the C++ code that makes the
mapping of which thread is responsible for each output and input port. For each state
of a multithreaded component it is also necessary to indicate which thread is active in
each automaton. The code of figure 3.53 illustrates a snippet of code showing how this
is done in the Pioneer component. For each state there is a thread mask indicating
which threads are active and running, and which ones are suspended.

c l a s s Pioneer : pub l i c Component
{

pub l i c :

. . .

p r i va t e :

. . .

enum Threads
{

LISTENING =DEFAULT THREADS,
THREADS

} ;

. . .
} ;

Figure 3.51: Component Pioneer : threads
identifiers.

The rationale of using two threads inside the Pioneer component, the default
main thread, and the listening thread, is based on the fact that their respective func-
tionalities are disjoint and orthogonal. The main thread attends the component´s
public output ports and send commands to the robot through the serial port. On the
other side, the listening thread just listens to anything the robot sends through the
serial port, and publishes this information by means of the component´s output ports.
This can be verified having a look to the code of figure 3.52. Observe how the main
thread is in charge of the majority of the public input ports of the component. Com-
plementarily the listening port thread is responsible for the most of the output ports.
There are also several private output and input ports through which both threads in-
tercommunicate each other; their use and utility were already resumed in tables 3.7
and 3.6.

3.6.1.5 Exceptions

In addition to the default exceptions provided by the framework, the Pioneer compo-
nent defines several additional exceptions. Table 3.9 resumes the different exceptions
the Pioneer component uses.

Figure 3.54 shows the code corresponding to the declaration of the non default
exceptions of the Pioneer component. There is also a typical prototype for an ex-
ception handler, in this case, an exception handler for the connection error exception.
Furthermore, figure 3.55 illustrates a snippet of code where it is possible to see how and

3.6. Component Composition 105

exception is instantiated in a component, concretely the connection error exception.
Below, it is outlined the body of an exception handler, the body corresponding to the
prototype that appears in figure 3.54. Concretely, this exception handler gets called
five times (see figure 3.55) before declaring the exception unrecoverable and driving the
component to running error state. What is done in the handler is just to listen to
the serial port for a specific time, if along all these attempts nothing is received then,
the component considers the serial connection as definitively broken. In that case,
the component would enter in running error state to wait for external intervention
through the component´s control port. Otherwise, the component recovers itself from
the exception, and returns to main state to continue normal execution.

Got to this point, a brief outline of the process of building an atomic CoolBOT
component has been presented. Observe that atomic components participate without
exception of all abstractions and concepts that have been presented so far, next section
will show how compound components do participate of these abstractions as well.

. . .

i n t Pioneer : : pInputPortToThread [INPUT PORTS + INPUT PORTS]=
{

MAIN, / / CONTROL
MAIN, / / HIGH PRIORITY COMMANDS
MAIN, / / MEDIUM PRIORITY COMMANDS
MAIN, / / LOW PRIORITY COMMANDS
LISTENING , / / ODOMETRYFEEDBACK
MAIN, / / EMPTY TRANSITION
MAIN, / / TIMER
MAIN, / / EXCEPTION IN LISTENING TASK
LISTENING , / / RESET ODOMETRY
MAIN, / / PORT THREAD MONITORING
LISTENING // LISTENING CONTROL

} ;

. . .

i n t Pioneer : : pOutputPortToThread [OUTPUT PORTS + OUTPUT PORTS]=
{

MAIN, / / MONITORING
LISTENING , / / STANDARD
LISTENING , / / ODOMETRY
LISTENING , / / SONAR POSITIONS
LISTENING , / / SONARS
LISTENING , / / ENCODER
LISTENING , / / CONFIG
LISTENING , / / LASER
MAIN, / / TO RESET ODOMETRY
LISTENING , / / PORT THREAD CONTROL

} ;

. . .

Figure 3.52: Component Pioneer : mapping of output and input
ports to port threads.

106 Chapter 3. CoolBOT Fundamentals

. . .

// s t a t e s t a r t i n g : begin

. . .

const bool Pioneer : : pStart ingThreadMask [THREADS]=
{

true , / / MAIN
f a l s e / / LISTENING

} ;

// s t a t e s t a r t i n g : end

. . .

// s t a t e main : end

. . .

const bool Pioneer : : pMainThreadMask [THREADS]=
{

true , / / MAIN
true // LISTENING

} ;

// s t a t e main : end

. . .

Figure 3.53: Component Pioneer : thread masks.

c l a s s Pioneer : pub l i c Component
{

pub l i c :

. . .

enum Except ions
{

ROBOT OPENING FAILED=DEFAULT EXCEPTIONS,
P2OS SYNCHRONIZATION FAILED,
CONNECTION ERROR,
ROBOT PARAMS LOAD FAILED,
EXCEPTIONS

} ;

. . .

p r i va t e :

. . .

// Exception CONNECTION ERROR: begin

s t a t i c bool connect ionErrorHand le r (Component ∗ pComp) ;

// Exception CONNECTION ERROR: end

. . .
} ;

Figure 3.54: Component Pioneer : exceptions declarations.

3.6. Component Composition 107

Exceptions
Name Brief Description
no memory Default exception, see section 3.3.4
inconsistency Default exception, see section 3.3.4
file not found Default exception, see section 3.3.4
robot opening failed This exception is thrown at the entry section of the starting

state when it is not possible to open the serial port.
p2os synchronization
failed

Once the component has opened the serial port correctly, it
is necessary to follow an initial synchronization protocol to
connect the P2OS running in the robot. This exception is
launched if such a protocol happens to be erroneous. This
synchronization is also performed in the entry section of the
starting state, so only there, this exception might occur.

robot params load
failed

This exception is raised when the component tries to load
the robot parameter file and something goes wrong. Once
the component has correctly completed the synchronization
protocol with the P2OS running in the robot, the robot
identifies itself. Based on this identification, the component
loads a file with information about the robot: number of
sonars, sonar positions, geometry, conversion factors, etc;
this information is different depending on the robot model.
This load happens also in the entry section of the starting
state.

connection error Once in execution, and having the component in the user
automaton, i.e., in the main state, it might happen that the
serial connection breaks down. Note that if, for instance, a
wireless link is used with the robot, some data might be lost
from time to time. Or perhaps, the serial wire connecting
the robot has been disconnected, or cut, etc. This exception
would be launched in such cases.

Table 3.9: Component Pioneer : exceptions.

3.6.2 Compound Components

The design principles of modularity, hierarchy and integrability, previously commented
in chapter 2 (section 2.4.1), constitute the rationale behind compound components in
CoolBOT.

Atomic components have been mainly devised to be used:

• to abstract low level hardware layers to control sensors and/or effectors,

• to interface and/or to wrap third party software and libraries,

• and to implement generic algorithms

108 Chapter 3. CoolBOT Fundamentals

in order to make them isolated pieces of deployable software in the form of CoolBOT
components. Thanks to the uniformity of external interface and internal structure that
CoolBOT imposes on components, CoolBOT components may be used as building
blocks that hide their internals behind a public external interface. Components, once
designed, developed, and tested enough, may be used as functional units wherever is
necessary. Some questions come up naturally from these considerations. What about
combinations of atomic components?. If these combinations were used as “single”
components, would it be possible to use them in new combinations, as if they were
atomic components as well?. Would it be interesting to consider combinations of
components as “single” components that verify the uniformity of interface and structure
that CoolBOT claims on components? Why?.

It is evident that atomic components are modular, in the sense, that they hide
their internals, and offer only a public external interface. It would be a step forward,
to have the possibility of integrating components in a way that, once integrated, they
could be considered as “single” components, that hide also their internals, and offer an
external interface of output and input ports, and observable and controllable variables,
like any “single” component. In CoolBOT, this idea of a combination of components
that, in turn, behaves like a “single” component is what have been called a compound

. . .

void Pioneer : : s t a t i c I n i t i a l i z a t i o n ()
{

. . .

ppExcept ions [CONNECTION ERROR]=
new Exception (CONNECTION ERROR,

ppExcept i on sS t r ing s [CONNECTION ERROR] ,
ppExcept i on sDesc r ip t i on s [CONNECTION ERROR] ,

5 , / / attempts
1000 , // m i l l i s e c ond s
connect ionErrorHandle r , / / handler

NULL, / / on−su c c e s s handler
NULL) ; / / on− f a i l u r e handler

. . .
}

. . .

// Exception CONNECTION ERROR: begin

bool Pioneer : : connect ionErrorHand le r (Component ∗ pComp)
{

Pioneer ∗ pThis=s t a t i c c a s t <Pioneer∗>(pComp) ;

. . .
}

// Exception CONNECTION ERROR: end

. . .

Figure 3.55: Component Pioneer : exception instantiation and an
exception handler.

3.6. Component Composition 109

component.

Like atomic components compound components are modular, they may be inte-
grated with other components, whether atomic or compound, to form other compound
components. In this manner, hierarchies of components may come up from compound
components. The hierarchy lowest levels appear when atomic components are reached.

A compound component, is a composition of instances of several components
which can be either atomic or compound. Figure 3.57 illustrates this idea graphically,
where the compound component c is a composition of two instances, one of an atomic
component a, ai, and one of another atomic component b, bi, both shown in figure 3.56.
Figure 3.58 depicts a compound component d made of an instance of the compound
component c, ci, and an instance of the atomic component b, bi, evidencing that
instances of compound components are functionally equivalents to atomic components
in terms of composition and instantiation. Default ports (empty transition, timer,
control and monitoring ports) are not shown.

a b
i1 i1

i2

o1
o2

o1
o2

Figure 3.56: Two atomic
components: a and b.

ai bi
i1 i1

i2

o1
o2

o1
o2

i1

o1o2

c

Figure 3.57: The compound
component c, a composition of
atomic components: a and b.

ic bi
i1 i1

i2

o1
o2

o1
o2

i1

o1o2

d

Figure 3.58: The compound
component d: a composition of a

compound component, c, and
atomic component, b.

A compound component is a component that uses the functionality of instances
of another atomic or compound components to implement its own functionality. Com-
ponents whose instances are used inside a compound component are called local com-
ponents, thus, b and c are local components of d in figure 3.58.

110 Chapter 3. CoolBOT Fundamentals

Compound components, like all CoolBOT components, are also port automata
which offers an external interface of output and input ports, and that have their func-
tionality defined internally by means of an automaton. Thence, they are provided by
the framework with the same component defaults (see section 3.3) that atomic com-
ponents.

3.6.2.1 The Supervisor

The automaton that coordinates and controls the functionality of a compound compo-
nent is called its supervisor, and like atomic components it follows the control graph
defined for the default automaton of figure 3.8. A compound component could be seen
as an atomic component, that internally uses instances of other components to achieve
its specific functionality. To emphasize this idea note that the main difference between
an atomic and a compound component is that the compound component would have a
line of code like this:

. . .
ppComponents [PIONEER]=new Pioneer (”/ dev/ ttyS0 ”) ;
. . .

that creates an instance of a component, a Pioneer component in this particular case,
attached to a specific serial port (for example, “/dev/ttyS0” for GNU/Linux, or
“COM1” for Windows). Code like this is typical in the constructors of compound com-
ponents. But the operations that a compound component can carry out on its locals
components are not only reduced to instantiation. Concretely, the supervisor of a com-
pound component controls and observes the execution of its local components through
their control and monitoring ports. Thus, it can have them running, suspended, wait-
ing in ready state, etc. Furthermore, it can modify any of their controllable variables,
default and non-default ones, and observe their behavior accessing all their controllable
variables, whether default or not. In few words, in general, it has the possibility of
monitoring and evaluating their level of progress and operation. On the other side, the
external interfaces of output and input ports of its different local components allows
connecting them forming diverse component topologies. Additionally, component in-
stantiation is not only limited to the constructor of compound components, it can be
performed at runtime wherever it is necessary.

Figure 3.59 clarifies the idea of the supervisor of a compound component; in the
particular case of the figure, the compound component that appears there abstracts
sensors and effectors in a typical mobile robot. In the figure the supervisor controls and
observes the local components through their control and monitoring ports (labelled as
c and m). The locals components have different functionalities. There is a motion
controller, which is a component that have direct access to the robotic platform,
and abstracts its low level vehicle motion interface. Another local component is the
ir/us/bumper server that encapsulates the low level interface to the sensor suite
typically found in any mobile robot (infrared sensors, sonars and bumpers), providing
time-stamped sensory data scans at a specific frequency. It also detects emergency
situations when the platform is too close to an obstacle. The laser server component

3.6. Component Composition 111

has a similar functionality that the ir/us/bumper server but applied, for instance,
to a SICK laser range finder. The battery monitor component is just in charge of
monitoring the robot battery levels. Finally, there is also a component called state
reflector that fuses all robot sensor and effector data and publishes it in an integrated
way. Observe how in the figure the supervisor is presented as a component inside the
compound component, this is to highlight that the supervisor has its own independent
flow of execution, the component kernel of the compound component, which constitute
the flow of control that integrates the behavior of multiple components. For further
clarification, the types of output and input ports are not shown in the figure.

Supervisor

Reflector
State

IR/US/Bumper
Server

Server

Laser

Controller

Motion

Monitor

Battery

c
m

c m

c

c

c

c

m

mm

m

ir/us/bumper raw

laser raw

state request

state

odometry/kinematics
commands

emergency

emergency

emergency

raw

raw

odometry/kinematics
commands

emergency

laser

SensorsAndMotion

ir/us/
bumper

odometry/
kinematics

Figure 3.59: A compound component: the supervisor.

Note that, in the same way that the automaton of an atomic component con-
centrates the control flow of a component, the supervisor of a compound component
concentrates the control flow of a composition of components. Note that the use of
compound components at different levels of component composition, is equivalent to
establish multiple levels of control loops by means of the integration of other com-
ponents, conforming in such a way, not only a hierarchy of components, but also a
hierarchy of control wherever they are used.

Figure 3.60 helps to illustrate graphically this idea, where there is a compound

112 Chapter 3. CoolBOT Fundamentals

component that internally makes use of instances of other components, one of which
is also a compound component. This, in turn, has a local component that is compound
as well. Only the default control and monitoring ports (c and m, respectively) are
shown in the figure. Observe as the top level compound component offers an external
interface that hides its internals, which allows it to be integrated in other components
to conform bigger components, and higher level of control loops.

Supervisor

Atomic Atomic

Supervisor

Atomic
Component

Compound
Component

c m

Component Component
c

c

c
c

m

m

m
m

m m

cc

Figure 3.60: A compound components: a hierarchy of
control.

3.6.2.1.1 Component Topologies: Internal and External Mapping A com-
pound component establishes a topology among its local components by means of two
kinds of port mappings:

• Internal Mapping : It is the set of all the port connections that internally con-
figures a compound component. It is constituted by all the connection between
local components´ ports. There are some examples of internal mapping in figures
3.57, 3.58 and 3.59. For example, in figure 3.59 the port connection between the
output port odometry/kinematics of the component motion controller, and
the input port of the same name in the local component state reflector.

• External Mapping : A compound component offers externally an interface of out-
put and input ports. Not all ports of its local components may be accessible from

3.6. Component Composition 113

outside. When one output port or one input port offered by the external interface
of a compound component corresponds to one port of one of its local components,
this port has been externally mapped, and it is said to be part of the compound
component´s external mapping. There are some examples of external mapping
in figures 3.57, 3.58 and 3.59. For instance, in figure 3.59, the correspondence
between the external input port commands of the compound component, and
the input port of the local component motion controller.

The functionality of a compound component depends not only on the individual
functionality of its local components, and the control flow that imposes the supervisor,
but also on the topology of port connections the local components conform. This
topology is established, as has been already commented, by means of internal and
external mapping. There are no restrictions as to where and when a supervisor may
establish both mappings, although it is obvious that a topology should be conveniently
established after a supervisor commands all its local components to get into running
state (figure 3.8).

Along the runtime life of a compound component the internal and external
mapping that defines the topology that connects its local components might change.
Bear in mind that to implement a specific functionality the supervisor of a given com-
pound component might need the use of different component topologies in different
states, possibly involving different component instances for each topology. Any change
of topology is carried out by means of several possible actions: instantiation of new
components, destruction of old ones, and configuration/deconfiguration of internal and
external mapping. Out of all these operations only configuration/deconfiguration of ex-
ternal mapping must be externally driven. Take into account that the other operations
can be completely hidden behind the compound component´s external interface.

If a compound component changes its internal topology, like, for example, sub-
stituting a component by another one. If such a change does not imply any modifi-
cation in the external mapping, the component does not need to communicate such
topology changes to any external component to which it may be connected, or to the
supervisor of a compound component where it is included. But, if a change in the
topology provokes a change of the external mapping of a specific input port, external
components connected to this port should be disconnected, and connected once the
external mapping in that port have been re-established. Changes of topology that
involves changes in the external mapping of a compound component need external su-
pervision, and this external supervision would be carried out by the supervisor of the
compound component where the component is included. Obviously, if the compound
component changing its external mapping were the top level component in a hierarchy
of components, the external supervision would not be necessary.

The simplified C++ code of figure 3.61 resumes the algorithm that a compound
component should follow when a change of topology must be carried out. Figure 3.62
contains a simplified C++ version of the algorithm the supervisor of a compound com-
ponent should follow when one of its components asks for doing a supervised topology
change. Observe like both algorithms, figures 3.61 and 3.62, use the default new config

114 Chapter 3. CoolBOT Fundamentals

observable variable (newConfig) to ask for supervision, and/or to confirm configuration
changes to the supervisor of the component in the next upper level of the hierarchy of
components. In the same way, the default config controllable variable (config) is used
to receive answers and supervision from the upper level. Note that the algorithm of
figure 3.62 is performed in transitions labelled as nc in the default automaton.

Component : : mappingChange (Topology newMapping)
{

suspendLocalComponents () ;
disconnectLocalComponents () ; / / I n t e r n a l mapping

maps(internalMapping (newMapping)) ;
connectLocalComponents (newMapping) ; / / I n t e r n a l mapping

i f (isNeeded (externalMapping (newMapping)))
{

i f (! isATopLevelComponent (t h i s))
{

// Ask f o r supe rv i s i on
pub l i sh (con f i g , externalMapping (newMapping)) ;
whi l e { waitForAnswer (cont ro lPor t (newConfig)) !=doMapping } ;

unmaps (externalMapping (newMapping)) ; / / External mapping
maps(externalMapping (newMapping)) ; / / External mapping

// Confirm mapping change completed
pub l i sh (con f i g , mappingDone) ;

}
e l s e
{

unmaps (externalMapping (newMapping)) ; / / External mapping
maps(externalMapping (newMapping)) ; / / External mapping

}

}
runLocalComponents () ;

}

Figure 3.61: Changing mapping.

3.6.2.2 Exception Handling

Compound components can define its own exceptions too. The process of defining
exceptions is exactly the same that the one used for atomic components. Observing
the default automaton in figure 3.8 it is easy to realize that CoolBOT promotes the
handling of exceptions at a local level first, and then if no solution is found, it demands
supervision to the upper level. Thus, it is possible to distinguish two levels of exception
handling at each level of control in a hierarchy of components:

• Local Exception Handling: A component, whether atomic or not, must deal
with any exception first at a local level, running its associated handler in the way
the default automaton establish (figure 3.8). If, as a result of the whole process
of recovering from a exception, the exception persists because the component
has not managed to cope with it, the component gets into starting error or
running error states, and remains there waiting for external intervention from
the supervisor in the upper level, if any, of the component hierarchy.

3.6. Component Composition 115

• External Exception Handling: Errors arriving to a supervisor from any of its
local components must be managed first by this supervisor. They can be either
ignored, propagated to higher levels in the hierarchy or handled as explained
above.

When exceptions are handled within compound components several strategies
can be envisaged, aside from the obvious re-instantiation of the faulty component.
Let’s suppose, for example, that we have several components that constitute equivalent
alternatives for developing the same task, possibly using different resources, but offering
the same external interface. Such components could be used alternatively to carry out
a specific task and hence, a general strategy to cope with components in running error
might be just substitution of one component with another one providing an equivalent
interface and functionality. A complementary strategy may also be useful to avoid
suspending a compound component whenever a member of the composition gets into
running error. Equivalent components can be declared as redundant and executed
concurrently or in parallel, so that if one of then fails, the others will keep the whole
component running.

Component : : supervisedMappingChange (Component component)
{

suspendLocalComponentsConnectedTo (component) ;
disconnectLocalComponentsConnectedTo (component) ; / / I n t e r n a l mapping

i f (has (externalMapping (component)))
{

i f (! isATopLevelComponent (t h i s))
{

// Ask f o r supe rv i s i on
pub l i sh (con f i g , externalMapping (component)) ;
whi l e { waitForAnswer (cont ro lPor t (component , newConfig)) !=doMapping } ;

command(component , con f i g , doMapping) ;
whi l e { waitForAnswer (cont ro lPor t (newConfig)) !=mappingDone } ;

unmaps (externalMapping (component)) ; / / External mapping
maps(externalMapping (component)) ; / / External mapping

// Confirm mapping change completed
pub l i sh (con f i g , mappingDone) ;

}
e l s e
{

command(component , con f i g , doMapping) ;
whi l e { waitForAnswer (cont ro lPor t (newConfig)) !=mappingDone } ;

unmaps (externalMapping (component)) ; / / External mapping
maps(externalMapping (component)) ; / / External mapping

}
}

connectLocalComponents (component) ;
runLocalComponents () ;

}

Figure 3.62: Supervising a mapping change.

116 Chapter 3. CoolBOT Fundamentals

Then, for instance, when a local component instance gets into running error
state, if a substitute exists, the supervisor will create an instance of it to carry out
a substitution and keep the compound component working. The erroneous instance
might be put into a queue of instances to be recovered. Instances in that recovery queue
might be restarted periodically to check out if the running error persists. Imagine that
there were a deadline for each instance in this recovery queue, so if the deadline expires
the instance is deleted from the queue and destroyed. Otherwise, if any of them were
recovered, the previous situation before its substitution could be restored. In that case,
the restored component will return to occupy again its place in the system, and the
substitute would be suspended and driven to dead state for its destruction.

In case of a local instance in a running error that could not be substituted, it
might be added to the recovery queue previously mentioned. If its deadline in the
queue were reached then the instance would be retired from the queue and destroyed.
This might provoke the whole compound component to go to running error, or not,
depending on its functionality.

An error that would need a special treatment is when a component hangs during
execution. In such a situation, it could not attend its control and monitoring ports,
turning it uncontrollable. When this exception were detected the component would
be destroyed, this time using an operating system call like kill(), and obviously, it
would not be added to the recovery queue.

3.7 Distributed Components

CoolBOT components reside in specific computers or machines when they are instan-
tiated and executed. Frequently, the functionality of a component which runs in one
machine may be needed in other computer elsewhere in a computer network. CoolBOT
provides a mechanism based on “mediator” components [Gamma et al., 1995] called
proxy components, and network processes called CoolBOT servers, to allow compo-
nents to be accessible through a computer network.

3.7.1 Proxy Components

CoolBOT components inter communicate by means of their external interface of output
and input ports when they are involved in port connections. At last term, output and
input ports rely on the basic ICC mechanisms already introduced in section 3.5 to
carry out the process of sending and receiving data between components in the form
of port packets. As it was commented in the mentioned section, such ICC mechanisms
just inter communicate components in the same machine, and more specifically, in the
same process where the threads that constitute components run, and share resources.

One of the design principles considered during CoolBOT design and develop-
ment was the transparency of communications among remote components (the “dis-
tributed” principle of section 2.4.1 in chapter 2). That principle claims that the inter

3.7. Distributed Components 117

communication between components residing in different machines should be function-
ally equivalent to the inter communication between components running in the same
machine in the same process. Consequently, components should use the same primi-
tives to interact indistinctly with local and remote components. Such primitives are
the ICC mechanisms used implicitly by the different typologies of output and input
ports, that components use to send and receive port packets. Tables 3.3 and 3.4 enu-
merate respectively every output and input port typology, and which type of basic ICC
mechanisms they use internally.

CoolBOT uses “mediators” [Gamma et al., 1995] components called proxy com-
ponents to allow components to interact with remote components in a transparent way,
through the same output and input port external interface they use to interact with
local components. A proxy component is the representative of another component in a
computer network. They are also CoolBOT components and participate of the same
defaults and features that any other CoolBOT component.

3.7.1.1 Component Attachment

Figure 3.63 helps to illustrate graphically the rationale which is behind proxy compo-
nents. Any component in a machine that should be accessible via a computer network
must be attached to a proxy component. This process of attaching implies several
actions.

COMPUTER
B

COMPUTER
A

componentcomponentcomponent component
proxy proxynetwork

input ports
input ports

input portsinput ports

input ports

output ports

output ports

output ports
output ports

output ports
complementary

complementarycomplementary

complementary network mapped

network mapped

Figure 3.63: Proxy components.

• Interface Adaptation: Proxy components adapt their external interface of out-
put and input ports to accommodate the external interface of the components
to which they are attached. It is said that the complementary input port of an
output port is an input port that accepts the same type of port packets that the
output port, and whose typology is compatible enough to form a port connection
with it. On the same terms, it is said that the complementary output port of an
input port is an output port that accepts the same type of port packets that the
input port, and whose typology is compatible enough to form a port connection
with it. The complementary output and input ports corresponding to each one
of the different types of output and input ports provided by the framework are
indicated in figures 3.27 and 3.28.

118 Chapter 3. CoolBOT Fundamentals

Proxy components adapt their external public interface of output and input ports
in such a way that they have, respectively, a complementary input and output
port corresponding to each public output and input port of the component to
which they are attached. It is said that during component attachment proxy
components acquire the complementary interface of the component to which they
are attached, figure 3.63 clarifies this concept. Having a complementary interface
allows proxy components to establish port connections with any of the output
and input ports of the component they act for the sake of.

• Network Mapping: Proxy components maps each one of the output and input
ports of its complementary external interface into what is called, respectively a
network mapped input port or a network mapped output port. To support network
mapped ports, proxy components make use of the widely known TCP/IP socket
API [Stevens, 1998]. Thus, a network mapped output port is the correspondence
of an input port with a TCP/IP socket, when this socket is connected to a re-
mote TCP/IP port, port packets received via the input port are sent through the
TCP/IP socket. Analogously, a network mapped input port is the correspondence
of an output port with a local TCP/IP socket which accepts new TCP/IP con-
nections, and receives incoming port packets via the network connections that
have already been established. Any port packet received through the TCP/IP
socket is sent out through the output port to which the socket is associated. Net-
work mapped output ports correspond to TCP/IP “client” sockets [Stevens, 1998]
for sending outgoing port packets. On the other side all the network mapped in-
put ports of a specific proxy component correspond to a TCP/IP “server” socket
[Stevens, 1998] associated to a given TCP/IP port listening for incoming port
packets and/or for accepting the creation of new TCP/IP connections. Figure
3.63 helps to show graphically the concept of network mapped ports.

Finally, a network mapped port connection is defined as a network mapped out-
put port/input port pair formed by a network mapped input port and a network
mapped output port, such that the complementary output and input ports they
map, are compatible enough to form a port connection.

• Network Registration: Proxy components need a TCP/IP port where to map
all the input ports of its complementary external interface of input ports. TCP/IP
ports are assigned by a network process called CoolBOT server. CoolBOT servers
are explained in more detail in section 3.7.2, two of them appears in figure 3.65.
Basically, they assign TCP/IP ports for proxy components in a specific machine,
and at the same time they keep a data base registering all the proxies running
in that machine, and which TCP/IP port they have assigned. Thus, for proxy
components, network registration is referred to as the action of asking the local
CoolBOT server for getting assigned a TCP/IP port, and being registered in its
local data base. In the process of network registration proxy components provide
also a name that will be the identifier that remote components will use to localize
it in the local machine, this name is called its network name.

3.7. Distributed Components 119

3.7.1.2 Functionality

The functionality of proxy components is resumed in figure 3.64 that depicts the user
automaton corresponding to every proxy component. Take into account that the figure
only shows the user automaton. Consult figure 3.8 to know how it fits inside the
default automaton. Neither does the figure show arrows corresponding to transitions
from the main user state to default automaton states. As shown by this figure, the
user automaton of proxy components is not very complex, it consists of just one state
called main.

At instantiation time, proxy com-

main

network
connection

accept

port packet
incoming

outgoing
port packet

Figure 3.64: Proxy components : the
user automaton.

ponents adapt its external interface of
output and input ports, in order to
have the complementary external inter-
face that fits exactly to the external in-
terface of the components to which they
are attached.

Once proxy components are set in
execution, they get into starting state
where they ask their local CoolBOT ser-
vers for getting assigned a TCP/IP port.
At the same time, they get registered
in the internal data base of their corre-
sponding local CoolBOT server. Then, at the same state, they map each one of their
output and input ports into network mapped input and output ports. Finally, if ev-
erything goes well, they get to ready state, where they wait idle for being commanded
to get into the user automaton for starting operation.

As soon as proxy components get into the user automaton, entering into the
main state of figure 3.64, they start operation where they do mainly three tasks, that
correspond exactly to the transitions that appear in figure 3.64:

1. Accept network connections: Remote proxy components may ask for estab-
lishing network connections. Network connections are demanded to map on them
a port connection, between the components that the proxy components represent.
If output and input ports at both ends in both components are compatible, a port
connection is mapped. In this moment, the proxy component establishes a port
connection with the component to which is attached using its complementary ex-
ternal interface. In this manner and from that moment on, incoming port packets
via that mapped port connection can be adequately sent to the component the
proxy is attached to.

2. Receive incoming port packets: Every port packet received via any of the
network mapped input ports involved in a network mapped port connection, is
sent directly through the output port it maps. In turn, this output port drives
the port packet to the corresponding input port of the component to which the

120 Chapter 3. CoolBOT Fundamentals

proxy is attached. Port packets are received through the network packed in the
form of strings of bytes. In section 3.6.1.2 it was commented that port packets
are packed and unpacked in strings of bytes in a machine-independent manner
using the XDR library [Bloomer, 1992]. Proxy components unpack incoming
“packed” port packets that, then, are re-sent through the corresponding output
ports towards the attached component.

3. Send outgoing port packets: Every port packet received through any of the
input ports that conform the complementary external interface of proxy compo-
nents, is sent out through its corresponding network mapping output port that
should take part in a network mapped port connection with a remote proxy
component. Port packets are packed in strings of bytes just before being sent
through the network. As commented previously, they are packed in a machine-
independent manner using the XDR library.

Proxy components also associate watchdogs with network connections that may
provoke local exceptions. Timeouts of such watchdogs are specified when the proxy
components are attached to their corresponding components. In the case of a watchdog
violation, as any other CoolBOT component, proxy components try to recover locally
from that violation, doing several attempts of a protocol of “sending something and
get an answer”, to confirm that the other part in the network connection is working
correctly. Take into account that this may happen frequently if part of the network
uses, for instance, a wireless infrastructure. Obviously, like any other component, if it
is not possible to recover from a watchdog violation, the proxy will enter in running
error state, and will wait for external intervention, usually from the supervisor of the
compound component where it might have been included.

An important functionality of proxy components which is not shown in its user
automaton in figure 3.64 is how to establish a port connection with a remote proxy.
Bear in mind that in the figure it is only shown a transition to accept remote network
connections where port connections will be mapped, but how does a proxy component
ask for a connection?. This is a functionality of proxy components that does not appear
in the user automaton in the figure, because the operation of doing a remote connection
is a method of the component C++ class which is provided by CoolBOT, and may
be called by the component itself or by its supervisor. This method is usually called
through the component to which the proxy component is attached.

It is necessary to make here some comments about how proxy components deal
with shared connections (section 3.5.2.6). Remember that a shared connection involves
a shared output port (OShared) and a shared input port (IShared), and that the basic
ICC mechanisms used are SSW, RSR, SSR and RSW as shown in tables 3.3 and
3.4. As explained in section 3.5.1, the main feature of these basic ICC mechanisms
is that they share a port packet called “shared packet” which resides in the shared
output port. As was commented, this packet is shared by all components involved
in a shared connection with the output port. How does a proxy component publish
through the network the port packet involved in a shared connection, if the component
to which it is attached has a shared output port?. The approach used in CoolBOT is

3.7. Distributed Components 121

to leave this decision to the developer of the shared packet. As it was also explained in
sections 3.5.1 and 3.5.2.6, port packets involved in shared connections define a set of
writing operations and a set of reading operations. The idea is that out of the writing
operations some of them oblige the packet to be sent through the network, if there is
a proxy component connected to the output port where the shared packet resides. So,
proxy components will do a copy of the shared packet when any of these “network-
forced-transfer” operations is signaled through a shared connection which has been
mapped into the network. If any other writing operation is signaled the proxy does
nothing.

In general, proxy components represent components to which they are attached
in the network. Thence, once attached it is possible to establish remote port con-
nections with remote proxy components residing in other computer. To do so, it is
necessary to know the IP address or DNS name of the remote machine, and the net-
work name of the remote proxy component as it was registered in its local CoolBOT
server. With this information it is necessary to ask the remote CoolBOT server for the
TCP/IP port assigned to the remote proxy component. Then, knowing the TCP/IP
port it is possible to connect directly to the remote proxy and establish a network
mapped port connection. On the other side, proxy components listen continuously to
the TCP/IP port they were assigned, in order to accept connections with other re-
mote proxy components. As to port packets, proxy components act for the sake of the
components to which they are attached. In such a way that, all port packets coming
via the network addressed to the component are routed to its proxy component that,
re-sends them to the component using its complementary output ports. Thus, for a
component there is no difference between receiving a port packet from a component
residing in the same machine, or coming from a component running in a remote ma-
chine. In the same manner, any port packet addressed to a remote component and
issued by the component, is received by the proxy component, that re-sends the port
packet through the network in case that there were a port connection established with
a remote machine.

3.7.2 CoolBOT Servers

A CoolBOT server is a process that runs in any machine or computer where there are
CoolBOT components. Figure 3.65 depicts graphically the concept.

The main goal of CoolBOT servers is to provide the following services to proxy
components :

• TCP/IP Port Allocation/Deallocation: In the process of component at-
tachment, local proxy components register themselves with the CoolBOT server.
Usually, the server selects randomly a TCP/IP port available in the underly-
ing operating system, and assigns them to proxy components. Obviously, when
a proxy component is detached from a specific component, the TCP/IP port is
deallocated.

122 Chapter 3. CoolBOT Fundamentals

COMPUTER
A

COMPUTER
B

network

CoolBOT
components

CoolBOT
components

processes
processes

CoolBOT
servers

TCP/IP

TCP/IP
connections

connections

CS CS

Figure 3.65: CoolBOT servers.

• Registration/Deregistration of Proxy Components : Besides of assigning
TCP/IP ports to proxy components, the CoolBOT server stores them in an in-
ternal data base. Concretely, it stores the correspondences between local proxy
components and TCP/IP ports they have been assigned. On the other side, in
the process of detachment of a proxy component, it gets de-registered from the
CoolBOT server, i.e., it is deleted from the internal data base, and as commented
in the previous paragraph, its TCP/IP port is released.

• Look-Up Operations: Remote proxy components need to know the TCP/IP
ports at which the local proxy components are listening for network connections.
CoolBOT servers accepts requests from remote proxy components to provide
them with this information. To do so, it looks up the information in its internal
data base. A remote proxy component, once found out the TCP/IP port corre-
sponding to the local proxy component to which it wants to connect, establishes
a network connection directly with it. From that very moment, all port pack-
ets interchanged between the components attached at both proxies are sent and
received via the network transparently by means of them (see figure 3.63).

3.8 Scopes, Objects and Class Methods

CoolBOT supports all the concepts and abstractions presented along this chapter in
the form of a hierarchy of C++ classes that conforms a namespace called CoolBOT.
This hierarchy of classes provides a rich set of objects together with their methods to
operate on components as operative units, and to program them internally.

Looking at programming languages the concept of scope is omnipresent. Having
a look to C++, for example, we can find several scopes: global scope, the main function
scope, global function scope, namespace scope, class scope, class member function
scope, etc. Each scope allows the programmer the use of a specific subset of the
constructs supported by the whole programming language. For instance, think about
the scope of static class member functions in C++, where it is not possible to utilize
the this pointer. Clearly, for each programming language several different scopes can
be distinguished, and usually these different scopes establish a hierarchical principle

3.8. Scopes, Objects and Class Methods 123

of organization. CoolBOT is a C++ framework where three particular scopes can be
clearly distinguished:

• Top Level Scope: For any CoolBOT application this is the scope where the
components situated at the top level of the hierarchy of components that consti-
tute the application are instantiated and executed. From a user´s point of view
it corresponds to the main function of the application.

• Compound Component Scope: This is the scope delimited by the declara-
tion and definition of a compound component. From a user´s point of view it
corresponds to a C++ class that implements a compound component.

• Atomic Component Scope: Analogously to the compound component scope,
this is the scope delimited by the declaration and definition of an atomic compo-
nent. From a user´s point of view it corresponds to a C++ class that implements
an atomic component.

CoolBOT maps these three scopes in scopes supported by C++, evidently in
any of this scopes any of the constructs and abstraction provided by C++ are also
valid. Finally, in table 3.10 we resume the most important objects and associated
methods provided by CoolBOT, and in which scopes they can be utilized.

Objects and Methods
Object Scopes Operation
Automaton
States

Atomic &
Compound &
Top Level

Run entry sections, run exit sections, run transi-
tions, get the current state.

Output Ports Atomic &
Compound &
Top Level

Instantiate output ports, establish and de-establish
port connections, ICC sender side mechanisms,
runtime verification of output port types, reconfig-
ure output ports, and destroy output ports.

Input Ports Atomic &
Compound &
Top Level

Instantiate input ports, ICC receiver side mecha-
nisms, runtime verification of input port types, re-
configure input ports, mask/unmask input ports,
mask/unmask controllable variables, and destroy
input ports.

Timers Atomic &
Compound &
Top Level

Instantiate timers, associate timers with ITick in-
put ports, set timers, start timers, stop timers, and
destroy timers.

Watchdogs Atomic &
Compound &
Top Level

Instantiate watchdogs, configure watchdogs to su-
pervise input ports (whatever type they have), as-
sociate callbacks with watchdog violations, start
watchdogs, stop watchdogs, and destroy watchdogs.

continued on next page

124 Chapter 3. CoolBOT Fundamentals

continued from previous page

Objects and Methods
Object Scopes Operation
Port Threads Atomic &

Compound &
Top Level

Instantiate port threads, associate port threads
with sets of input ports, run port threads, run
port threads, suspend port threads, un-launch port
threads, wait for port threads, and destroy port
threads.

Exceptions Atomic &
Compound &
Top Level

Instantiate exceptions, configure exceptions, throw
exceptions, un-throw exceptions, operations to
change the process of exception recovery in the de-
fault automaton, and destroy exceptions.

Components Compound &
Top Level

Instantiate components, configure components,
control components (through their control ports),
observe components (through their monitoring
ports), connect local components (internal map-
ping), map external ports (external mapping), de-
stroy components.

Proxy Com-
ponents

Compound &
Top Level

Instantiate proxy components, attach proxy compo-
nents, detach proxy components, connect to remote
proxy components, disconnect from remote proxy
components, destroy proxy components.

Table 3.10: Scopes, objects and methods.

Chapter 4

Using CoolBOT

In this chapter some examples of simple robotic systems will be shown in order to
illustrate the use of the framework for building robotic systems. It has not been devised
to show in detail all the features and possibilities that CoolBOT provides, but to give
a general vision about the methodology of constructing systems using CoolBOT.

4.1 Introduction

This chapter tries to answer several questions. Given a component that we must build
endowing it with a specific functionality, which type of ports should it use?. There are
several typologies of output and input ports with their own functionalities. Output and
input ports take part into the external interface that components offer, so the type of
output and input ports chosen at design-time has important effects in how components
can be inter connected and used. Section 4.2 contains a discussion on which decisions
might be made about which port types should be used in a specific design.

The next section, section 4.3, illustrates the use of CoolBOT in robotics, con-
cretely implementing a reactive example in mobile robotics. The example is a typical
one used in several well-known books [Arkin, 1998] [Murphy, 2000] to explain the re-
active paradigm.

The following section, section 4.4, will continue describing how, from a reactive
level and a set of developed and tested components implementing some behaviors, it is
easy to integrate them using the constructs and abstractions that CoolBOT provides
in order to make the robot perform a more complex task.

In section 4.5 it is proposed how a more formal description for tasks could
be built using CoolBOT. This formal task approach uses some constructs of process
algebra [Lyons and Arbib, 1989] [Lyons, 1990] [Kos̆ecká et al., 1997] to integrate com-
ponents.

125

126 Chapter 4. Using CoolBOT

4.2 Which Port Type should be used?

In some circumstances, it is evident for a component which type of output or input port
should be used for communication with other components. Some types of output and
input ports have a clear functionality as, for instance, priority output and input ports,
or tick output and input ports. But, in multiple occasions, it may not be clear which
type of output or input port should be used. Obviously, in such cases, to make design
decisions several questions should be taken into account. What does the component?.
Does it operate driven by the port packets it receives through its input ports, or on
the contrary, does it work asynchronously respect to its input ports?. Is it periodic in
its operation?. Must it keep a frequency of operation?, is that frequency high?. Is it a
producer of data for multiple components?, or, on the opposite, is it mainly a consumer
of data from other components?. All previous questions guide design decisions oriented
to chose the type of output and input ports that a component will offer as its external
interface. Obviously the basic ICC mechanisms each type of output and input port
use internally to carry out its functionality have a lot to do with such decisions. This
section is addressed to put some grounds to support design decisions about the type
of output and input ports that components offer through their external interfaces.

There is a common situation pattern where the election of the type of output
and input ports can introduce significant computational costs in component inter com-
munication. This is the well known pattern of “one producer and multiple consumers”
illustrated in figure 4.1. This configuration of components usually involves a compo-
nent, the producer, that produces data and publishes them in the form of port packets
through one of its output ports. Other components, the consumers, that rely on those
data in order to operate, access them establishing port connections with the output
port through which the producer publishes those data. Depending on the number of
consumers, on the length in bytes of the port packets emitted by the producer, and on
the type of port connections involved, the cost of communications can be significant
enough to prefer some output and input port types instead of others.

For the configuration of components in figure 4.1 several experiments have been
carried out in order to measure the communication costs that imply the use of different
types of port connections that might be used to implement the one-producer-multiple-
consumers topology displayed in the figure. Three types of port connections has been
considered for benchmarking: fifo connections, poster connections, and shared connec-
tions. For each type of port connection, it has been measured the cost of each ICC
mechanism at both sides of the connections, the sender side, and the receiver side.
The measurements have been performed for configurations combining one producer
with 1, 5, 10, and 50 consumers, and for port packet lengths of 24 bytes, 128 bytes,
1 kbyte, 50 kbytes and 100 kbytes. To carry out such measurements the topology of
figure 4.1 has been reproduced, in an application running in an Intel Pentium IV at 1.4
Ghz with 128 Mbytes of RAM, under a GNU/Linux Mandrake 9.1 distribution, and
Microsoft Windows XP professional. The producer in all experiments was endowed
with a working period of 100 milliseconds. The experiments were also tested at other
different periods, concretely at 0, 10, 50 and 200 milliseconds, there were no signifi-

4.2. Which Port Type should be used? 127

cant differences for both operating systems for working periods above 50 milliseconds.
Results were different for periods under 50 milliseconds. Take into account that the
closer the working period of the producer to the quantum of time assigned by the
operating system scheduler (10-15 milliseconds in Windows, and 20 milliseconds for
GNU/LINUX), the higher the synchronization costs of the different ICC mechanisms
due to the overhead of the operating system’s thread dispatching mechanism. More-
over, if the working period gets smaller than this quantum of time, the synchronization
costs become really dominant caused by this overhead introduced by the operating
system. To minimize the influence of the differences between the models of thread
scheduling present in both operating systems, the components in all experiments (the
producer and the consumers) have been executed at the same policy priority with the
same priority level, concretely at normal policy with priority 8 (see figure 3.3 in section
3.2.4 for more information about priorities).

Tables in figure 4.2 show the re-

port
connections

. .
 .

. .

. .
 .producer

consumer

consumer

consumer
1

2

n

Figure 4.1: One producer of data and
multiple consumers.

sults obtained for fifo connections in
both operating systems. Tables in fig-
ure 4.3 contain the measurements corre-
sponding to poster connections, and fig-
ure 4.4 shows the tables containing the
results for shared connections. Time
measurements were taken differently in
both operating systems. In GNU/Linux
was used the function gettimeofday()

in time.h which has a resolution of
microseconds. For Windows the pair
of Win32 API functions QueryPerfor-

manceCounter() and QueryPerforman-

ceFrequency() were utilized. Used to-
gether they allow measuring time with a
resolution under microseconds. In par-
ticular, in the machine where the experi-

ments were performed the resolution obtained using this pair of functions was of about
279 nanoseconds. We considered that at least a resolution of microsecond was enough
to illustrate the differences between the three types of port connections under consid-
eration.

The first interesting observation that comes up from the measurements of these
three different types of port connections is that the measured costs for each ICC mech-
anism in each operating system are similar. This result is to a certain extend surprising
due to the differences between the thread models used by each operating system, and
also due to the fact that the libraries used by CoolBOT on each operating system in
order to achieve multithreading are also distinct. A priori, we were expecting bigger
discrepancies, in spite of having CoolBOT coded uniformly in both operating systems.

As a second meaningful observation, the measurements confirm the internal de-
sign given to each one of the types of connections. Thus for fifo connections, sender side

128 Chapter 4. Using CoolBOT

F
I
F
O

C
O

N
N

E
C

T
I
O

N
S

-
G

N
U

/
L
I
N

U
X

-
1
0
0

M
S
E
C

S
.

C
O

N
-

S
U

M
E

R
S

IC
C

P
O

R
T

P
A

C
K

E
T

L
E

N
G

T
H

S

M
E

C
H

A
N

IS
M

S
2
4

b
y
tes

1
2
8

b
y
tes

1
k
b
y
te

5
0

k
b
y
tes

1
0
0

k
b
y
tes

1

A
S

m
in

0
.0

0
7

0
.0

0
4

0
.0

0
4

0
.0

0
4

0
.0

0
4

m
a

x
0
.0

5
5

0
.1

1
9

0
.0

9
5

0
.0

7
8

0
.0

3
7

m
e
a

n
0
.0

1
1
6
6

0
.0

0
7
4
5

0
.0

0
7
2
8

0
.0

0
7
3
3

0
.0

0
7
5
7

σ
0
.0

0
9
5
2

0
.0

0
9
1
2

0
.0

0
9
0
3

0
.0

0
9
1
6

0
.0

0
9
0
4

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

P
R

m
in

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

m
a

x
0
.0

0
3

0
.0

8
0

0
.0

0
3

0
.0

4
4

0
.0

0
3

m
e
a

n
0
.0

0
1
9
8

0
.0

0
2
0
4

0
.0

0
1
8
9

0
.0

0
1
8
3

0
.0

0
1
8
9

σ
0
.0

0
0
2
0

0
.0

0
0
8
2

0
.0

0
0
3
2

0
.0

0
0
7
0

0
.0

0
0
3
4

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

5

A
S

+
A

S
C

s

m
in

0
.0

3
6

0
.0

2
1

0
.0

2
3

0
.1

8
3

0
.4

9
8

m
a

x
0
.2

0
9

0
.6

8
1

0
.1

8
2

0
.3

9
7

0
.7

9
6

m
e
a

n
0
.0

4
1
3
3

0
.0

2
4
9
2

0
.0

2
7
5
1

0
.1

9
8
7
0

0
.5

2
6
2
7

σ
0
.0

1
4
5
4

0
.0

1
5
7
8

0
.0

1
4
4
1

0
.0

1
8
5
3

0
.0

2
7
1
0

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

P
R

m
in

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

m
a

x
0
.0

0
4

0
.0

0
3

0
.0

0
3

0
.0

0
3

0
.0

0
3

m
e
a

n
0
.0

0
2
5
6

0
.0

0
2
0
9

0
.0

0
1
9
6

0
.0

0
1
9
2

0
.0

0
1
8
5

σ
0
.0

0
0
2
2

0
.0

0
0
0
8

0
.0

0
0
1
0

0
.0

0
0
2
1

0
.0

0
0
1
0

v
a

lu
e
s

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

1
0

A
S

+
A

S
C

s

m
in

0
.0

7
4

0
.0

4
2

0
.0

5
0

0
.4

7
4

1
.0

7
6

m
a

x
0
.9

6
3

0
.3

6
4

0
.3

7
1

0
.8

9
1

1
.7

8
0

m
e
a

n
0
.0

7
9
2
3

0
.0

4
6
6
9

0
.0

5
3
1
2

0
.4

9
2
3
3

1
.1

4
8
7
1

σ
0
.0

1
9
3
0

0
.0

1
7
5
6

0
.0

1
7
5
6

0
.0

2
2
4
1

0
.0

6
9
9
8

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

P
R

m
in

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

m
a

x
0
.0

0
4

1
.2

6
1

0
.0

0
3

0
.0

1
8

0
.0

2
6

m
e
a

n
0
.0

0
2
6
0

0
.0

0
2
1
0

0
.0

0
1
9
4

0
.0

0
1
9
6

0
.0

0
2
0
1

σ
0
.0

0
0
1
6

0
.0

0
0
0
9

0
.0

0
0
0
7

0
.0

0
0
1
1

0
.0

0
0
1
5

v
a

lu
e
s

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

5
0

A
S

+
A

S
C

s

m
in

0
.3

7
6

0
.2

2
6

0
.2

5
8

2
.8

7
0

6
.0

0
8

m
a

x
2
6
.7

4
0

5
3
.8

5
4

2
7
.5

0
2

5
8
.6

2
3

1
0
5
.0

1
3

m
e
a

n
3
.2

4
4
9
0

3
.2

4
0
5
4

3
.3

9
5
4
4

7
.7

6
5
8
3

1
3
.2

4
0
8
5

σ
0
.8

8
5
5
8

1
.3

4
6
6
9

1
.0

9
9
8
9

2
.5

6
2
6
9

3
.7

7
8
4
3

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

P
R

m
in

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

m
a

x
0
.1

8
9

0
.3

3
0

7
.9

0
9

0
.7

5
6

1
.8

1
1

m
e
a

n
0
.0

0
3
2
8

0
.0

0
3
2
9

0
.0

0
3
3
8

0
.0

0
3
3
9

0
.0

0
3
9
1

σ
0
.0

0
0
0
4

0
.0

0
0
0
5

0
.0

0
0
3
0

0
.0

0
0
1
5

0
.0

0
0
1
9

v
a

lu
e
s

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

F
I
F
O

C
O

N
N

E
C

T
I
O

N
S

-
W

I
N

D
O

W
S

-
1
0
0

M
S
E
C

S
.

C
O

N
-

S
U

M
E

R
S

IC
C

P
O

R
T

P
A

C
K

E
T

L
E

N
G

T
H

S

M
E

C
H

A
N

IS
M

S
2
4

b
y
tes

1
2
8

b
y
tes

1
k
b
y
te

5
0

k
b
y
tes

1
0
0

k
b
y
tes

1

A
S

m
in

0
.0

1
7
6
0

0
.0

0
4
4
7

0
.0

0
4
1
9

0
.0

0
4
1
9

0
.0

0
4
4
7

m
a

x
0
.3

1
9
0
3

0
.0

4
8
6
1

0
.2

3
4
6
7

0
.0

6
5
9
3

0
.1

4
8
3
4

m
e
a

n
0
.0

2
1
6
2

0
.0

0
5
8
0

0
.0

0
5
5
7

0
.0

0
5
3
8

0
.0

0
5
8
7

σ
0
.0

0
6
5
7

0
.0

0
3
8
2

0
.0

0
4
5
2

0
.0

0
3
9
1

0
.0

0
4
1
3

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

P
R

m
in

0
.0

0
1
9
6

0
.0

0
1
9
6

0
.0

0
1
9
6

0
.0

0
1
6
8

0
.0

0
1
6
8

m
a

x
0
.0

0
2
7
9

0
.1

2
2
6
4

0
.0

5
0
2
9

0
.2

9
3
0
5

0
.1

2
7
9
5

m
e
a

n
0
.0

0
2
1
8

0
.0

0
1
9
9

0
.0

0
1
9
6

0
.0

0
1
9
7

0
.0

0
1
9
7

σ
0
.0

0
0
1
6

0
.0

0
1
3
9

0
.0

0
0
4
8

0
.0

0
2
9
6

0
.0

0
1
2
6

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

5

A
S

+
A

S
C

s

m
in

0
.0

3
1
0
1

0
.0

2
2
0
7

0
.0

2
4
5
8

0
.1

8
6
3
4

0
.4

8
6
1
0

m
a

x
0
.2

7
9
6
4

0
.0

8
3
2
5

0
.2

0
4
7
7

0
.7

8
7
2
5

0
.7

9
0
6
0

m
e
a

n
0
.0

4
5
4
0

0
.0

2
4
6
9

0
.0

2
7
3
1

0
.2

0
1
5
1

0
.5

2
9
0
4

σ
0
.0

0
7
8
8

0
.0

0
4
7
6

0
.0

0
4
9
9

0
.0

1
4
1
9

0
.0

1
9
0
8

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

P
R

m
in

0
.0

0
1
6
8

0
.0

0
1
6
8

0
.0

0
1
6
8

0
.0

0
1
6
8

0
.0

0
1
6
8

m
a

x
0
.0

5
4
4
8

0
.0

5
3
6
4

0
.1

7
6
5
6

0
.2

1
2
0
4

0
.0

5
5
0
3

m
e
a

n
0
.0

0
2
1
9

0
.0

0
2
0
1

0
.0

0
1
9
5

0
.0

0
1
8
5

0
.0

0
1
7
9

σ
0
.0

0
0
0
9

0
.0

0
0
0
5

0
.0

0
0
0
2

0
.0

0
0
0
9

0
.0

0
0
0
6

v
a

lu
e
s

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

1
0

A
S

+
A

S
C

s

m
in

0
.0

6
9
8
4

0
.0

4
4
9
8

0
.0

5
0
8
4

0
.4

7
1
8
5

1
.0

5
2
0
9

m
a

x
0
.5

7
4
3
7

9
.7

1
3
2
5

0
.4

6
4
8
6

2
9
.9

5
5
4
8

2
.3

4
6
9
5

m
e
a

n
0
.1

1
7
9
4

0
.0

8
2
8
1

0
.0

8
8
2
9

0
.5

5
9
4
1

1
.2

1
2
5
3

σ
0
.0

6
2
2
2

0
.1

1
0
1
9

0
.0

5
4
1
2

0
.3

2
6
8
8

0
.1

6
7
7
5

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

P
R

m
in

0
.0

0
1
6
8

0
.0

0
1
6
8

0
.0

0
1
6
8

0
.0

0
1
6
8

0
.0

0
1
6
8

m
a

x
4
.4

9
0
7
9

0
.1

0
3
9
2

0
.0

9
7
5
0

0
.0

9
3
3
1

0
.1

8
5
7
8

m
e
a

n
0
.0

0
2
3
4

0
.0

0
2
0
3

0
.0

0
2
0
3

0
.0

0
1
9
6

0
.0

0
1
9
9

σ
0
.0

0
0
2
7

0
.0

0
0
0
2

0
.0

0
0
0
1

0
.0

0
0
1
4

0
.0

0
0
1
2

v
a

lu
e
s

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

5
0

A
S

+
A

S
C

s

m
in

0
.2

8
4
9
5

0
.2

3
1
0
3

0
.2

6
4
8
4

2
.8

3
5
8
4

5
.9

8
6
5
2

m
a

x
2
.4

4
9
1
9

3
8
.2

7
8
3
3

6
.9

0
3
1
1

1
5
8
.0

4
0
4
8

2
1
.2

0
0
7
4

m
e
a

n
0
.3

2
0
6
8

0
.2

5
7
4
8

0
.2

9
0
0
4

3
.0

0
9
2
4

6
.9

7
3
1
7

σ
0
.0

6
7
5
4

0
.3

8
5
7
8

0
.0

9
4
0
6

2
.3

4
6
1
1

0
.9

2
2
8
2

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

P
R

m
in

0
.0

0
1
6
8

0
.0

0
1
6
8

0
.0

0
1
6
8

0
.0

0
1
6
8

0
.0

0
1
6
8

m
a

x
2
1
.0

7
6
4
2

2
1
.9

8
5
7
6

2
1
.6

1
3
6
4

2
1
.1

4
5
4
2

2
1
.2

2
5
6
0

m
e
a

n
0
.0

0
2
5
9

0
.0

0
2
4
5

0
.0

0
2
5
0

0
.0

0
2
6
7

0
.0

0
2
4
9

σ
0
.0

0
2
2
5

0
.0

0
1
9
6

0
.0

0
2
3
9

0
.0

0
3
6
5

0
.0

0
3
0
7

v
a

lu
e
s

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

F
igu

re
4.2:

F
ifo

con
n
ection

s:
m

easu
rem

en
ts

in
G

N
U

/L
in

u
x

an
d

W
in

d
ow

s.
W

ork
in

g
p
erio

d
of

100
m

illisecon
d
s.

M
easu

rem
en

ts
in

m
illisecon

d
s.

4.2. Which Port Type should be used? 129

ICC mechanisms are more costly that receiver side ICC mechanisms. Having a look at
any of the tables of figure 4.2 it is easy to observe that the PRs (passive receptions)
have a small cost that remains constant independently of the number of consumers
involved in the connection, and the size of the port packets taking part into the com-
munications. On the contrary, sender side mechanisms, AS (active sendings) and ASCs
(active sendings with copy) get more costly, mainly as the number of consumers grows,
and also as the port packet size increments. This is due not only to the cost of copy-
ing in the ASCs, but also to inter component synchronization whose cost grows with
the number of components involved in the same fifo connection. Bear in mind that
the minimum values for each ICC mechanism depicted on the different tables are the
closest ones to the real cost of each ICC mechanism with minimum synchronization.
All in all, the results of the experiment for fifo connections confirms that in this type
of connections the sender is the side that assumes the most part of the cost in the
communication between components.

As to poster connections, at first sight we get to a similar conclusion. The
measurements confirm the design given to poster connections, and observing the tables
of figure 4.3 we can notice that in general, the consumers perform the most costly
operations in poster connections. Remember that PSs (passive sendings) do not make
any port packet copy, they consist in just a swapping of pointers or references, and the
signaling of the poster input ports involved in the same connection. Results confirm
that but indicate also that when the number of consumers grows, synchronization costs
increase also, even to a level where the cost performed at the server side is similar to
the work carried out at the receiver side. This is due to the fact that when the sender
emits a PS it must wait for the releasing of a critical section where several consumers
(readers) might be accessing the poster, even in the case that the sender has only to
perform a swapping of pointers. As to the receiver side, ARs (active receptions) has a
cost which is mainly proportional to the size of the port packets. As a summary of the
results obtained for poster connections, the results confirm the design given to poster
connections, where, receivers carry out the most costly operations due to port packet
copies, but also they unveil the significance of synchronization costs in communications.
Thence, the more components are taking part into a connection, the more dominant
synchronization costs get during inter component communications. And in the case of
poster connections, it is the sender side the part which assumes the majority of the
synchronization costs.

With respect to shared connections the measures shown in the tables of figure 4.4
provide results which are similar to the ones obtained for poster connections except for
the fact that the sender side ICC mechanism involved in this type of port connection,
the SSWs (sender shared writings), adds an additional cost of port packet copying to
the synchronization costs incurred by the PSs. This is not strange because the shared
packet designed for this experiment only implements a writing operation and a reading
operation, and both of them make a copy of the shared port packet. Evidently this
is why, in general, in shared connections the sender and receiver sides have the same
synchronization costs than its corresponding sides in poster connections. Then to this
cost it is necessary to add the cost of the different writing and reading operations im-

130 Chapter 4. Using CoolBOT

plemented by the shared port packet. Note that it is not the same to make a raw copy
of a 100-kbyte port packet than to make a query to a shared data-base, or to a complex
data structure shared by multiple components, imagine for example a data structure
like the LPS (Local Perceptual Space) of Saphira [Konolige et al., 1997]. Thence de-
pending on the different writing and reading operations implemented by the shared
packet they may become dominant in terms of timing costs in the communications
performed through shared connections.

A third important comment that comes up from the results obtained in these
benchmarking experiments is that inter component synchronization is not for free. This
is very clear observing the results collected for poster and shared connections where the
timing costs for the sender side ICC mechanisms grow proportionally to the number
of components involved in the same connection.

In addition, it is important to highlight again that in the experiments the
producer and the consumers were executed at the same priority in order to re-
duce the influence of priorities in the measurements. Take into account that, for
instance, giving a higher priority to the producer would reduce the mean cost of
the sender side ICC mechanisms for all types of connections, although in this case
the underlying operating systems could have some more influence in the results as
they use different approaches to solve priority inversion problems (see references
[Nichols et al., 1996] and [Bover and Cesati, 2001] for GNU/Linux, and [Richter, 1997]
and [Solomon and Russinovich, 2000] for Windows).

There is a question we have not answered yet. Which one of the types of port
connections under consideration is more convenient in this topology of one producer
multiple consumers?. Which one should we use?. From the measurements we have
collected for each type of connection we know they behave according to its internal
design, although inter component synchronization costs are dominant when the number
of components involved in the same connection is high. Anyway we think the following
rules or recipes of design can be useful to guide design decisions about the external
interface of components in this case:

• High Frequency Producers: A producer working at a high frequency that
must provide data to multiple consumers, should consume as less time as possible
doing communications, so poster connections looks like the correct choice for data
that should be updated at high frequencies, because the sender side mechanisms
in this type of connections are less costly. We have to take into account that if
the number of consumers grows then to avoid the increasing of synchronization
times in the producer, it should be assigned a higher priority than the priority at
which its consumers run. Another form of reducing synchronization cost would
be having the consumers running at working frequencies lower than the operating
frequency at which the producer executes.

It is not difficult to find high frequency producers in a robotic system. They cor-
respond usually to components that collect information from sensors and publish
it in some “normalized” way in order to make sensory information available to
the rest of components that conform a system.

4.2. Which Port Type should be used? 131

P
O

S
T

E
R

C
O

N
N

E
C

T
I
O

N
S

-
G

N
U

/
L
I
N

U
X

-
1
0
0

M
S
E
C

S
.

C
O

N
-

S
U

M
E

R
S

IC
C

P
O

R
T

P
A

C
K

E
T

L
E

N
G

T
H

S

M
E

C
H

A
N

IS
M

S
2
4

b
y
te

s
1
2
8

b
y
te

s
1

k
b
y
te

5
0

k
b
y
te

s
1
0
0

k
b
y
te

s

1

P
S

m
in

0
.0

0
7

0
.0

0
4

0
.0

0
4

0
.0

0
5

0
.0

0
4

m
a

x
0
.8

4
6

0
.5

7
0

0
.5

7
1

0
.2

0
1

0
.2

8
8

m
e
a

n
0
.0

1
1
9
1

0
.0

0
8
3
2

0
.0

0
8
7
8

0
.0

1
4
2
4

0
.0

2
1
7
3

σ
0
.0

1
4
1
6

0
.0

1
1
6
1

0
.0

1
8
0
9

0
.0

2
7
2
3

0
.0

5
1
2
5

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

A
R

m
in

0
.0

0
4

0
.0

0
3

0
.0

0
4

0
.0

5
3

0
.1

3
0

m
a

x
0
.0

0
8

0
.0

0
5

0
.0

2
1

0
.1

5
8

0
.1

5
8

m
e
a

n
0
.0

0
4
7
0

0
.0

0
3
6
6

0
.0

0
5
0
6

0
.0

6
8
6
4

0
.1

4
7
1
4

σ
0
.0

0
0
4
8

0
.0

0
0
4
8

0
.0

0
0
4
9

0
.0

0
4
5
1

0
.0

0
4
8
3

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

5

P
S

m
in

0
.0

2
2

0
.0

1
5

0
.0

1
6

0
.0

1
6

0
.0

1
5

m
a

x
0
.2

1
3

0
.1

9
4

0
.1

9
8

0
.5

0
8

0
.9

8
3

m
e
a

n
0
.0

2
6
2
6

0
.0

1
7
8
1

0
.0

1
8
8
6

0
.0

2
1
5
1

0
.0

2
5
4
9

σ
0
.0

1
6
8
3

0
.0

1
5
5
8

0
.0

1
5
9
4

0
.0

4
3
9
7

0
.0

8
7
1
1

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

A
R

m
in

0
.0

0
2

0
.0

0
2

0
.0

0
3

0
.0

4
7

0
.1

1
5

m
a

x
0
.0

0
6

0
.0

0
5

0
.0

0
7

0
.0

8
7

0
.1

8
0

m
e
a

n
0
.0

0
4
7
3

0
.0

0
3
3
9

0
.0

0
4
7
6

0
.0

7
2
1
9

0
.1

4
2
2
2

σ
0
.0

0
0
2
6

0
.0

0
0
1
6

0
.0

0
0
0
8

0
.0

0
3
9
7

0
.0

0
5
7
2

v
a

lu
e
s

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

1
0

P
S

m
in

0
.0

4
3

0
.0

2
8

0
.0

3
0

0
.0

3
1

0
.0

3
1

m
a

x
0
.4

2
5

0
.3

9
4

0
.4

0
4

1
.0

3
5

1
.9

4
7

m
e
a

n
0
.0

4
6
7
7

0
.0

3
1
6
2

0
.0

3
3
3
0

0
.0

3
6
0
1

0
.0

3
8
8
3

σ
0
.0

2
0
1
8

0
.0

1
9
1
1

0
.0

1
9
4
7

0
.0

5
3
3
1

0
.1

0
4
8
0

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

A
R

m
in

0
.0

0
3

0
.0

0
2

0
.0

0
3

0
.0

4
4

0
.1

1
7

m
a

x
0
.5

9
6

1
.2

5
9

1
.2

6
5

1
.5

0
8

2
.5

8
5

m
e
a

n
0
.0

0
4
5
8

0
.0

0
3
6
5

0
.0

0
4
7
8

0
.0

6
9
7
1

0
.1

4
3
0
0

σ
0
.0

0
0
3
0

0
.0

0
0
1
1

0
.0

0
0
1
9

0
.0

0
4
4
0

0
.0

0
5
7
3

v
a

lu
e
s

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

5
0

P
S

m
in

0
.2

1
7

0
.1

4
6

0
.1

5
0

0
.1

5
6

0
.1

5
3

m
a

x
3
6
.1

6
2

1
0
4
.1

3
7

2
8
.1

7
7

5
8
.8

9
2

5
5
.4

0
3

m
e
a

n
3
.4

6
1
5
4

3
.4

1
7
7
4

3
.4

0
6
7
7

7
.9

9
2
6
2

1
3
.6

3
8
1
1

σ
1
.1

6
1
9
9

1
.6

3
2
9
4

0
.9

8
2
7
8

1
.9

6
3
4
7

2
.7

9
3
7
2

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

A
R

m
in

0
.0

0
2

0
.0

0
2

0
.0

0
3

0
.0

3
8

0
.0

9
8

m
a

x
0
.7

5
5

2
.1

3
4

0
.3

9
6

2
2
.7

4
6

4
1
.5

6
8

m
e
a

n
0
.0

0
5
8
8

0
.0

0
5
2
9

0
.0

0
6
6
7

0
.0

9
1
3
2

0
.1

9
3
8
3

σ
0
.0

0
0
3
7

0
.0

0
0
4
5

0
.0

0
0
5
1

0
.0

0
8
0
8

0
.0

1
5
8
7

v
a

lu
e
s

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

P
O

S
T

E
R

C
O

N
N

E
C

T
I
O

N
S

-
W

I
N

D
O

W
S

-
1
0
0

M
S
E
C

S
.

C
O

N
-

S
U

M
E

R
S

IC
C

P
O

R
T

P
A

C
K

E
T

L
E

N
G

T
H

S

M
E

C
H

A
N

IS
M

S
2
4

b
y
te

s
1
2
8

b
y
te

s
1

k
b
y
te

5
0

k
b
y
te

s
1
0
0

k
b
y
te

s

1

P
S

m
in

0
.0

0
5
5
9

0
.0

0
4
4
7

0
.0

0
4
1
9

0
.0

0
4
1
9

0
.0

0
4
4
7

m
a

x
0
.0

6
8
1
7

0
.0

4
3
8
6

0
.0

4
4
9
8

0
.1

4
4
4
3

0
.2

2
5
7
3

m
e
a

n
0
.0

0
7
6
1

0
.0

0
6
0
1

0
.0

0
6
1
0

0
.0

1
0
1
5

0
.0

1
6
4
4

σ
0
.0

0
5
6
0

0
.0

0
4
8
4

0
.0

0
5
2
0

0
.0

2
0
0
2

0
.0

4
0
5
9

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

A
R

m
in

0
.0

0
5
3
1

0
.0

0
4
1
9

0
.0

0
5
5
9

0
.0

5
4
2
0

0
.1

1
9
2
9

m
a

x
0
.0

5
5
5
9

0
.0

5
3
3
6

0
.0

5
8
3
9

0
.2

3
5
5
0

0
.3

1
5
9
6

m
e
a

n
0
.0

0
6
5
4

0
.0

0
4
8
0

0
.0

0
6
1
9

0
.0

6
5
3
2

0
.1

3
8
3
7

σ
0
.0

0
1
1
6

0
.0

0
0
8
5

0
.0

0
1
1
3

0
.0

0
5
1
6

0
.0

0
7
5
2

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

5

P
S

m
in

0
.0

1
8
7
2

0
.0

1
5
9
2

0
.0

1
4
8
1

0
.0

1
4
8
1

0
.0

1
5
0
9

m
a

x
0
.1

0
0
2
9

0
.0

8
9
6
8

0
.1

1
8
4
5

0
.4

3
5
8
1

0
.2

5
5
9
0

m
e
a

n
0
.0

2
2
5
9

0
.0

1
8
4
0

0
.0

1
7
6
3

0
.0

2
5
2
7

0
.0

3
3
2
3

σ
0
.0

0
7
3
5

0
.0

0
6
1
8

0
.0

0
6
7
4

0
.0

2
9
7
7

0
.0

5
3
5
3

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

A
R

m
in

0
.0

0
5
0
3

0
.0

0
4
4
7

0
.0

0
5
3
1

0
.0

5
5
0
3

0
.1

1
7
6
1

m
a

x
0
.1

8
1
0
3

0
.2

0
5
6
1

0
.3

3
3
8
4

0
.2

7
8
2
5

0
.6

2
7
4
5

m
e
a

n
0
.0

0
6
6
8

0
.0

0
5
0
4

0
.0

0
6
3
4

0
.0

6
8
3
2

0
.1

4
5
8
4

σ
0
.0

0
0
3
0

0
.0

0
0
0
7

0
.0

0
0
1
2

0
.0

0
3
1
5

0
.0

0
2
0
9

v
a

lu
e
s

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

1
0

P
S

m
in

0
.0

3
6
8
8

0
.0

2
9
0
5

0
.0

2
9
0
5

0
.0

2
9
8
9

0
.0

2
9
6
1

m
a

x
0
.9

0
2
9
1

0
.5

1
2
6
3

4
.9

1
5
7
1

2
.0

0
1
0
9

4
.6

7
4
0
6

m
e
a

n
0
.0

9
0
5
8

0
.0

7
1
6
2

0
.0

7
4
8
1

0
.2

1
6
6
6

0
.3

9
1
8
4

σ
0
.0

6
8
6
0

0
.0

6
0
7
1

0
.0

8
0
2
9

0
.2

5
3
4
2

0
.5

2
6
0
2

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

A
R

m
in

0
.0

0
3
9
1

0
.0

0
3
9
1

0
.0

0
4
4
7

0
.0

4
0
7
9

0
.1

0
6
7
2

m
a

x
4
.0

6
0
5
7

3
.2

4
9
5
8

0
.2

0
1
4
2

5
.4

4
3
9
9

5
.5

6
6
9
1

m
e
a

n
0
.0

0
6
5
3

0
.0

0
5
3
3

0
.0

0
6
2
8

0
.0

7
0
7
9

0
.1

5
0
2
6

σ
0
.0

0
0
1
7

0
.0

0
0
1
6

0
.0

0
0
1
6

0
.0

0
4
1
7

0
.0

0
5
5
0

v
a

lu
e
s

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

5
0

P
S

m
in

0
.2

0
0
5
8

0
.1

4
6
3
9

0
.1

4
8
0
6

0
.1

5
0
8
6

0
.1

5
0
3
0

m
a

x
3
9
.9

7
0
7
2

4
.6

2
4
0
5

1
0
.9

1
3
1
2

9
.3

1
1
2
4

1
3
.6

6
5
4
2

m
e
a

n
0
.3

8
9
5
3

0
.3

2
7
3
9

0
.3

3
8
2
6

0
.8

5
2
5
3

1
.5

8
0
5
8

σ
0
.5

1
5
4
6

0
.3

3
4
3
9

0
.3

6
6
3
3

1
.3

1
0
1
5

2
.6

3
3
4
5

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

A
R

m
in

0
.0

0
2
5
1

0
.0

0
2
2
3

0
.0

0
3
0
7

0
.0

3
9
1
1

0
.0

0
2
5
1

m
a

x
1
6
9
.8

2
7
7
3

2
1
.2

7
1
9
8

2
3
.9

4
6
9
0

9
9
.4

5
5
3
8

1
0
4
.3

3
7
8
4

m
e
a

n
0
.0

3
7
4
7

0
.0

1
5
8
5

0
.0

1
7
8
3

0
.0

8
5
1
1

0
.1

8
8
4
8

σ
0
.0

2
0
3
5

0
.0

1
0
1
1

0
.0

1
0
4
7

0
.0

2
9
4
2

0
.0

8
6
7
0

v
a

lu
e
s

4
9
9
9
3
6

4
9
9
9
3
5

4
9
9
9
3
5

4
9
9
9
1
2

4
9
9
8
8
7

F
ig

u
re

4.
3:

P
os

te
r

co
n
n
ec

ti
on

s:
m

ea
su

re
m

en
ts

in
G

N
U

/L
in

u
x

an
d

W
in

d
ow

s.
W

or
k
in

g
p
er

io
d

of
10

0
m

il
li
se

co
n
d
s.

M
ea

su
re

m
en

ts
in

m
il
li
se

co
n
d
s.

132 Chapter 4. Using CoolBOT

• High Frequency Consumers: If the consumers must operate at high frequen-
cies, it seems interesting to keep their working pace to avoid them the most costly
part in communications. In this case it is evident that fifo connections are the
most convenient choice, because the communication cost at the receiver side in
this type of port connections is small, and depends mainly on the length of the
port packets.

Typical high frequency consumers are, for instance, components that control
actuators in robotic systems. Imagine, for example, a component controlling the
motor joints of a pan-tilt robotic camera, or the motors guiding a mobile robot,
or the motor joints of a robotic arm.

• Sharing of Complex Data Structures: If multiple components should share
a complex data structure which is big enough to make its copying costly in
terms of time, or costly in terms of memory if multiple copies of it were kept
by several components, the most rational choice would be the use of shared
connections. Take into account that the cost in this type of connections not
only depends on synchronization issues, but also on the writing and reading
operations implemented by the shared packet, which should be in this case the
shared complex data structure. Thus, choosing conveniently these operations in
order to make them not too costly can make shared connections the better option.

Using complex data structures shared by multiple components is not a rare sit-
uation in robotic systems. As an example, think, for instance, about the LPS
(Local Perceptual Space) in Saphira [Konolige et al., 1997], which is a complex
data structure shared by multiple components.

As a final comment, it is necessary to make emphasis in the fact that the results
of these experiments are applicable to the rest of typologies of port connections which
have not been studied for benchmarking, because all of them use the same types of
basic ICC mechanisms to inter communicate components. Tick connections are the
only exception, because they utilize the SS (signal sending) and SR (signal reception)
ICC mechanisms. Note that by design the cost of this mechanisms is purely due to
inter component synchronization, so they should increase as the number of components
involved in the connections grows.

4.3 A Reactive Example

CoolBOT has been conceived to promote integrability, incremental design and robust-
ness of software developments in robotics. In this section, a first example will be shown
to illustrate how such principles manifest in systems built using CoolBOT. As a first
example, it will be illustrated a very basic reactive level in a typical mobile robot. The
example has been chosen from [Murphy, 2000] (chapter 4, page 107) in order to use a
well-know example as a reference.

4.3. A Reactive Example 133

S
H

A
R

E
D

C
O

N
N

E
C

T
I
O

N
S

-
G

N
U

/
L
I
N

U
X

-
1
0
0

M
S
E
C

S
.

C
O

N
-

S
U

M
E

R
S

IC
C

P
O

R
T

P
A

C
K

E
T

L
E

N
G

T
H

S

M
E

C
H

A
N

IS
M

S
2
4

b
y
te

s
1
2
8

b
y
te

s
1

k
b
y
te

5
0

k
b
y
te

s
1
0
0

k
b
y
te

s

1

S
S
W

m
in

0
.0

0
6

0
.0

0
4

0
.0

0
5

0
.0

4
3

0
.0

6
8

m
a

x
0
.1

6
0

0
.0

4
2

0
.2

2
6

0
.6

1
9

0
.5

7
9

m
e
a

n
0
.0

1
0
5
0

0
.0

0
8
2
5

0
.0

0
9
7
3

0
.0

5
7
7
6

0
.1

0
9
2
1

σ
0
.0

1
2
0
4

0
.0

0
9
7
5

0
.0

1
0
3
0

0
.0

3
3
1
5

0
.0

5
9
8
7

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

R
S
R

m
in

0
.0

0
3

0
.0

0
2

0
.0

0
3

0
.0

6
5

0
.1

3
6

m
a

x
0
.0

1
2

0
.0

0
4

0
.0

0
6

0
.1

8
3

0
.4

2
7

m
e
a

n
0
.0

0
3
8
2

0
.0

0
3
2
0

0
.0

0
4
6
5

0
.0

7
9
0
2

0
.1

4
5
2
5

σ
0
.0

0
0
4
4

0
.0

0
0
4
0

0
.0

0
0
5
9

0
.0

0
3
5
8

0
.0

0
4
3
4

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

5

S
S
W

m
in

0
.0

1
7

0
.0

1
6

0
.0

1
6

0
.0

6
6

0
.1

1
6

m
a

x
0
.2

1
3

0
.1

8
8

0
.1

9
3

0
.8

5
3

1
.2

5
7

m
e
a

n
0
.0

2
0
0
6

0
.0

1
7
9
0

0
.0

1
8
3
2

0
.0

7
5
8
7

0
.1

2
9
7
1

σ
0
.0

1
7
1
5

0
.0

1
5
0
2

0
.0

1
5
4
5

0
.0

4
5
5
9

0
.0

7
9
3
0

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

R
S
R

m
in

0
.0

0
2

0
.0

0
2

0
.0

0
3

0
.0

5
7

0
.1

1
8

m
a

x
0
.0

0
5

0
.0

0
4

0
.0

0
6

0
.1

3
7

0
.1

9
5

m
e
a

n
0
.0

0
3
8
3

0
.0

0
2
9
9

0
.0

0
4
4
5

0
.0

8
1
3
4

0
.1

5
6
7
5

σ
0
.0

0
0
1
2

0
.0

0
0
0
7

0
.0

0
0
1
6

0
.0

0
2
2
3

0
.0

0
5
1
1

v
a

lu
e
s

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

1
0

S
S
W

m
in

0
.0

3
0

0
.0

2
8

0
.0

3
0

0
.0

7
7

0
.1

3
2

m
a

x
0
.4

1
5

0
.3

8
3

0
.3

8
9

1
.7

7
9

2
.8

2
1

m
e
a

n
0
.0

3
2
4
2

0
.0

3
0
5
2

0
.0

3
2
3
5

0
.0

8
5
7
3

0
.1

4
1
9
2

σ
0
.0

2
0
5
6

0
.0

1
8
3
6

0
.0

1
8
8
3

0
.0

5
9
2
7

0
.0

9
3
0
6

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

R
S
R

m
in

0
.0

0
2

0
.0

0
2

0
.0

0
3

0
.0

5
7

0
.1

0
5

m
a

x
2
.6

6
1

0
.0

0
4

0
.0

2
9

1
.9

5
0

2
.2

2
1

m
e
a

n
0
.0

0
3
9
4

0
.0

0
3
1
1

0
.0

0
4
5
0

0
.0

8
1
3
4

0
.1

5
3
5
0

σ
0
.0

0
0
1
3

0
.0

0
0
0
7

0
.0

0
0
1
7

0
.0

0
2
5
9

0
.0

0
6
3
9

v
a

lu
e
s

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

5
0

S
S
W

m
in

0
.1

4
6

0
.1

4
1

0
.1

4
1

0
.1

9
6

0
.2

4
5

m
a

x
4
4
.0

1
5

4
3
.8

1
8

5
8
.5

9
8

3
2
.2

9
0

5
5
.3

0
2

m
e
a

n
3
.2

9
3
6
6

3
.2

4
4
0
4

3
.4

3
0
9
3

8
.2

0
3
9
7

1
3
.6

8
9
2
2

σ
1
.0

4
4
1
0

1
.0

6
7
3
0

1
.3

5
7
4
8

1
.8

0
9
5
7

2
.8

8
7
6
6

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

R
S
R

m
in

0
.0

0
2

0
.0

0
2

0
.0

0
3

0
.0

4
1

0
.0

9
7

m
a

x
0
.2

2
7

0
.4

4
1

2
.1

9
0

3
2
.3

7
1

3
9
.3

7
9

m
e
a

n
0
.0

0
4
3
6

0
.0

0
4
5
1

0
.0

0
6
5
8

0
.0

9
8
0
8

0
.1

9
9
9
0

σ
0
.0

0
0
1
8

0
.0

0
0
1
8

0
.0

0
0
3
2

0
.0

0
6
2
3

0
.0

1
2
9
0

v
a

lu
e
s

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

5
0
0
0
0
0

S
H

A
R

E
D

C
O

N
N

E
C

T
I
O

N
S

-
W

I
N

D
O

W
S

-
1
0
0

M
S
E
C

S
.

C
O

N
-

S
U

M
E

R
S

IC
C

P
O

R
T

P
A

C
K

E
T

L
E

N
G

T
H

S

M
E

C
H

A
N

IS
M

S
2
4

b
y
te

s
1
2
8

b
y
te

s
1

k
b
y
te

5
0

k
b
y
te

s
1
0
0

k
b
y
te

s

1

S
S
W

m
in

0
.0

0
5
8
7

0
.0

0
4
7
5

0
.0

0
5
5
9

0
.0

6
1
7
4

0
.1

1
8
1
7

m
a

x
0
.0

8
6
3
2

0
.1

4
2
7
6

0
.0

7
8
7
8

0
.2

3
9
4
2

0
.3

7
0
4
4

m
e
a

n
0
.0

0
8
5
5

0
.0

0
6
2
1

0
.0

0
7
5
5

0
.0

7
6
3
4

0
.1

3
8
9
9

σ
0
.0

0
6
2
4

0
.0

0
4
9
3

0
.0

0
5
1
0

0
.0

3
1
3
3

0
.0

5
0
5
9

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

R
S
R

m
in

0
.0

0
4
7
5

0
.0

0
4
1
9

0
.0

0
4
7
5

0
.0

7
3
7
5

0
.1

3
1
8
6

m
a

x
0
.1

1
5
1
0

0
.0

6
2
3
0

0
.1

4
7
5
0

0
.2

3
7
7
4

0
.3

2
4
0
6

m
e
a

n
0
.0

0
5
0
4

0
.0

0
4
4
8

0
.0

0
5
9
0

0
.0

8
1
3
7

0
.1

4
9
9
7

σ
0
.0

0
1
5
9

0
.0

0
0
8
3

0
.0

0
1
8
5

0
.0

0
5
0
0

0
.0

0
6
4
9

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

5

S
S
W

m
in

0
.0

1
6
7
6

0
.0

1
4
8
1

0
.0

1
6
2
0

0
.0

8
3
8
1

0
.1

4
3
5
9

m
a

x
0
.1

9
0
8
1

0
.0

9
0
5
1

0
.0

9
0
5
1

0
.3

3
8
0
3

1
.0

5
8
5
1

m
e
a

n
0
.0

2
0
1
3

0
.0

1
7
1
4

0
.0

1
8
9
3

0
.1

0
7
8
6

0
.1

7
5
8
7

σ
0
.0

0
7
5
1

0
.0

0
5
9
3

0
.0

0
6
1
8

0
.0

2
7
1
7

0
.0

4
9
6
4

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

R
S
R

m
in

0
.0

0
4
7
5

0
.0

0
4
1
9

0
.0

0
4
7
5

0
.0

6
3
9
7

0
.1

2
2
0
8

m
a

x
0
.2

2
3
4
9

0
.1

8
9
1
3

2
.9

7
3
0
0

0
.4

8
6
9
3

6
.9

6
0
6
6

m
e
a

n
0
.0

0
5
3
9

0
.0

0
4
6
7

0
.0

0
6
1
2

0
.0

8
2
6
0

0
.1

5
1
0
8

σ
0
.0

0
0
0
8

0
.0

0
0
0
8

0
.0

0
0
1
1

0
.0

0
2
0
7

0
.0

0
8
8
0

v
a

lu
e
s

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

5
0
0
0
0

1
0

S
S
W

m
in

0
.0

3
0
4
5

0
.0

2
7
9
4

0
.0

2
9
6
1

0
.0

9
4
7
0

0
.1

5
6
1
7

m
a

x
0
.9

0
6
2
6

2
.5

5
1
7
2

0
.7

1
5
1
7

4
.1

3
1
5
3

3
.1

9
7
3
3

m
e
a

n
0
.0

8
4
6
9

0
.0

7
0
2
1

0
.0

7
3
0
9

0
.2

9
1
1
7

0
.5

0
2
2
0

σ
0
.0

7
1
9
9

0
.0

7
5
7
5

0
.0

6
1
8
0

0
.2

5
4
5
9

0
.4

5
9
3
1

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

R
S
R

m
in

0
.0

0
3
9
1

0
.0

0
3
9
1

0
.0

0
4
4
7

0
.0

3
8
8
3

0
.0

8
3
8
1

m
a

x
0
.1

8
9
4
1

1
.2

2
2
7
8

4
.0

0
1
9
1

1
0
.6

2
2
5
8

6
.5

1
5
3
5

m
e
a

n
0
.0

0
4
9
8

0
.0

0
4
8
5

0
.0

0
5
9
0

0
.0

7
9
3
9

0
.1

4
8
0
1

σ
0
.0

0
0
1
2

0
.0

0
0
0
8

0
.0

0
0
2
7

0
.0

0
2
7
5

0
.0

1
3
4
9

v
a

lu
e
s

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

5
0

S
S
W

m
in

0
.1

4
4
9
9

0
.1

4
1
3
6

0
.1

4
1
3
6

0
.2

1
8
1
8

0
.2

8
6
0
7

m
a

x
5
2
.9

6
8
1
8

6
2
.1

5
9
5
8

1
3
.2

0
3
9
1

1
6
.1

9
2
2
8

3
5
.4

2
7
1
3

m
e
a

n
0
.3

5
5
2
8

0
.3

4
0
7
1

0
.3

4
1
0
5

0
.9

1
3
4
4

1
.7

9
4
8
6

σ
0
.6

6
1
2
5

0
.7

3
8
2
4

0
.4

1
5
4
7

1
.2

6
9
7
2

2
.7

9
4
4
1

v
a

lu
e
s

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

1
0
0
0
0

R
S
R

m
in

0
.0

0
2
5
1

0
.0

0
2
2
3

0
.0

0
3
3
5

0
.0

3
8
8
3

0
.1

0
1
6
9

m
a

x
2
9
.6

4
8
4
6

2
2
.5

1
4
0
3

7
2
.9

2
7
7
0

5
7
.7

8
9
7
5

4
0
.3

6
0
4
4

m
e
a

n
0
.0

2
1
3
0

0
.0

1
1
0
4

0
.0

1
3
2
8

0
.1

1
4
0
6

0
.2

2
7
5
3

σ
0
.0

1
0
6
5

0
.0

0
4
5
6

0
.0

0
5
2
9

0
.0

5
8
1
8

0
.1

5
5
0
9

v
a

lu
e
s

4
9
9
8
8
4

4
9
9
8
8
4

4
9
9
8
8
5

4
9
9
8
9
3

4
9
9
8
9
2

F
ig

u
re

4.
4:

S
h
ar

ed
co

n
n
ec

ti
on

s:
m

ea
su

re
m

en
ts

in
G

N
U

/L
in

u
x

an
d

W
in

d
ow

s.
W

or
k
in

g
p
er

io
d

of
10

0
m

il
li
se

co
n
d
s.

M
ea

su
re

m
en

ts
in

m
il
li
se

co
n
d
s.

134 Chapter 4. Using CoolBOT

The objective of this section is to illustrate how a mobile robot can be endowed
with different capabilities by means of integrating components in an incremental way
using CoolBOT. Thus, initially the robot will only be able to avoid obstacles moving
away from them, and finally it will end up with a “wanderer” conduct with obstacle
avoidance.

4.3.1 An Avoiding Component

Along the examples we will be using the P2DX Pioneer robot of displayed in figure 3.41.
To interface with it, the Pioneer component introduced in chapter 3 (section 3.6.1)
will be utilized. Using that component, an atomic component, called PF Avoiding has
been designed and built to endow this robot with the capability of avoiding obstacles.
The external interface of public output and input ports of this component appears in
figure 4.5. Output and input port types are indicated by their symbols in parentheses.
Consult tables 3.3 and 3.4 for the symbols associated respectively to output and input
ports. Tables 4.1 and 4.2 describe briefly each one of the public output and input
ports the component offers. Non default observable variables (period, distance and
persistence) and non default controllable variables (new period, new distance and new
persistence) appear at the bottom of the figure, they are explained respectively in
tables 4.3 and 4.4.

positions
sonar

sonars

bumpers

strategic
vector

monitoring

control

(l)

(lmp)

(p)

(p)

(p)

(mp)

PF
AVOIDING

ov: period, cv: new period,
distance, new distance,
persistence new persistence

high priority
commands

(g)

low priority
commands

(g)

Figure 4.5: Component PF Avoiding : external
interface.

The PF Avoiding component makes use of a potential field
approach[Arkin, 1998] [Murphy, 2000] to perform obstacle avoidance using robot
sonar readings as sensory information. In particular, for each sonar reading the
component will associate a repulsive potential field that verifies the following equation:

4.3. A Reactive Example 135

Public Output Ports
Name Brief Description
monitoring This is the default monitoring output port by means of which the com-

ponent publishes all its observable variables. It is always an OLazy-
MultiPacket for all components.

high priority
commands

This is an OGeneric output port. Through this port the component
sends commands to the mobile robot. It is connected to the homonym
public input port of the Pioneer component. It transports high pri-
ority robot commands.

low priority
commands

This is an OGeneric output port. Through this port the component
sends commands to the mobile robot. It is connected to the homonym
public input port of the Pioneer component. It transports low priority
robot commands.

Table 4.1: Component PF Avoiding : public output ports.

Public Input Ports
Name Brief Description
control This is the component´s default control port through which control-

lable variables may be modified and updated. It is always an IMulti-
Packet input port for all components.

sonar posi-
tions

The Pioneer component publishes the positions in robot coordinates
of each one of its sonar sensors. The PF Avoiding component uses
this IPoster input port to know how many sonar sensors the robot
has and their locations on the robot. It should be connected to the
Pioneer component´s homonym public output port.

sonars The PF Avoiding component disposes of this IPoster input port, in
order to receive the sonar readings the Pioneer component publishes
periodically through its OPoster public output port called sonars.

bumpers This IPoster input port is used to receive periodically information
about the status of the bumpers available in the mobile robot. Infor-
mation about bumpers is published through the Pioneer component’s
public standard output port, so it should be connected to that output
port.

strategic vec-
tor

This is an ILast input port through which an strategic vector can be
provided to the robot.

Table 4.2: Component PF Avoiding : public input ports.

−→ri (
−→p ,−→pi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−→u , if d ≤ dmin

(
dmin

d

)2 −→u , if dmin < d < dmax

−→
0 , if d > dmax

(4.1)

such that, −→p is any position in robot coordinates; −→pi is the ith robot sonar reading in

136 Chapter 4. Using CoolBOT

Non Default Observable Variables
Name Brief Description
period This observable variable indicates at which pe-

riod operates the component.
distance This observable variable is dmax in equation 4.1.

It indicates the minimum distance at which the
robot should start moving away from any de-
tected obstacle.

persistence This observable variable contains the time of
persistence during which an strategic vector re-
ceived through the strategic vector input port is
valid.

Table 4.3: Component PF Avoiding : non default observable variables.

Non Default Controllable Variables
Name Brief Description
new period Through this controllable variable it is possible

to change the working period of the component.
It updates the period observable variable.

new distance Through this controllable variable it is possible
to change how close the robot may get to any
obstacle (dmax in equation 4.1). It modifies the
distance observable variable.

new persistence By means of this controllable variable the per-
sistence of the strategic vectors received by the
component can be modified. It updates the ob-
servable variable persistence.

Table 4.4: Component PF Avoiding : non default controllable variables.

robot coordinates as well; d = |−→p −−→pi | is the euclidean distance between −→p and −→pi ;−→u =
−→p −−→pi

|−→p −−→pi | is an unitary vector between −→p and −→pi ; dmax is a threshold distance from

−→pi specifying the minimum distance at which repulsion starts taking effect; and dmin

is the minimum distance from −→pi where −→r saturates to −→u .

The equation 4.1 returns a vector, −→ri , whose angle is the orientation that the
robot should take to run away from the obstacle, and whose modulus takes values
between 0 and 1, expressing which fraction of a maximum velocity should be com-
manded to the robot to runaway from the obstacle. The closer there is an obstacle,
the faster the robot runs away from it. Obviously when the obstacle is too close, the
modulus saturates to 1, that happens when |−→p −−→pi | ≤ dmin. On the opposite, an
obstacle has no influence when it is beyond the distance threshold dmax. Figure 4.6
shows graphically an example of the repulsive potential field introduced by each sonar
reading corresponding to equation 4.1.

Usually, a specific robot has several sonar sensors, and each one of them induces

4.3. A Reactive Example 137

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

m
e

te
rs

meters

Figure 4.6: Component PF Avoiding : repulsive potential field.

a repulsive field. Thus, if there are n sonar sensors, there will be n −→ri vectors exerted
on the robot in the way shown in equation 4.1. Usually, they are combined following
the next equation:

−→r (−→p) =
1

n

n∑
i=1

−→ri (
−→p ,−→pi) (4.2)

which calculates the average of the repulsive vectors induced by all sensors.

The user automaton corresponding to the PF Avoiding component is exposed
in figure 4.7. Transitions to default automaton states are not displayed. It consists of
the following states:

138 Chapter 4. Using CoolBOT

waiting avoiding

silence

sonars

bumping

strategic
vector

new

connected
robot

watchdog
timeout

robot
up

robot
up

bumper
on

bumper
off

timer

watchdog
timeout

period

timer

period
new

new

distance
new persistence

Figure 4.7: Component PF Avoiding : user automaton.

• waiting: This is the user automaton entry state of the PF Avoiding component.
In it, the component remains idle, waiting until it gets connected to a Pioneer
component instance, through its public input ports: sonar positions, sonars and
bumpers (table 4.2 describes each one of them). Once connected the component
transits to the avoiding state.

• avoiding: This is the main state of the PF Avoiding component. Several tran-
sitions are possible:

– new period: The PF Avoiding component operates with a period deter-
mined by the period observable variable, which can be, in turn, updated by
means of the new period controllable variable (transition new period in
figure 4.7).

– sonars: Through the sonars input port the PF Avoiding component re-
ceives individual robot sonar readings. The component accumulates the
repulsive vector corresponding to each incoming sonar reading as they are
received.

– strategic vector: The strategic vector input port may be used by an ex-
ternal component to influence the behavior of the PF Avoiding component.
If an strategic vector has been received through that input port, it stores
the vector internally, and associates it with a time stamp. In the timer
transition will be explained how this vector influences component´s behav-
ior. Strategic vectors should verify that their moduli take only real values
between 0 and 1.

– new persistence: As commented above each time a strategic vector is

4.3. A Reactive Example 139

received, it is time-stamped. The component only memorizes internally
the last one strategic vector received. This vector has associated a time of
persistence, a time period during which it may influence the behavior of the
component. Once this time expires, the strategic vector becomes obsolete,
and it is ignored. This time of persistence is determined by the persistence
observable variable, which may be modified and updated by means of the
new persistence controllable variable.

– new distance: It is possible to change how close the robot may get to
obstacles by means of modifying the distance observable variable. As in-
dicated in table 4.3, this variable contains the value dmax of equation 4.1
which is used to calculate the repulsive vectors originated by each sonar
reading. This observable variable is changed by means of updating the new
distance controllable variable (see table 4.4). This component makes dmin

in equation 4.1 equals to a half of the value of dmax (dmin = dmax

2
).

– timer: With a periodicity determined by the period observable variable,
this transition is triggered once per period. In general, each time this tran-
sition occurs the component will have accumulated several repulsive vectors
corresponding to various sonar readings. Take into account that they are ac-
cumulated individually as they are received through the sonars input port.
In general, sonar readings received in each period do not correspond to all
the sonar sensors available in the robot. Thence, only a few sonar readings
are available in each period. The PF Avoiding component only takes into
account the sonar readings corresponding to the last period, so, it accumu-
lates only the repulsive vectors corresponding to them. When the timer
transition gets called the component averages these last-period repulsive
vectors. Additionally, if there is an active strategic vector whose persis-
tence time has not expired yet, then this vector is also averaged with the
last-period repulsive vectors. Otherwise the strategic vector is ignored. The
result of this average of vectors will be used to command the robot through
the low priority commands output port: the modulus of the vector will be
used to command the robot velocity, and its orientation to command the
robot orientation.

– bumper on: Besides of receiving sonar sensor information in order to carry
out obstacle avoidance, the PF Avoiding component monitors the status of
the bumpers in the robot. If any of the bumpers gets activated the robot has
crashed into an obstacle, in this case this transition drives the component
to bumping state.

– watchdog timeout: The PF Avoiding component has a watchdog associ-
ated to the bumpers input port. Note from table 4.2 that this input port
should be connected to the standard output port of the Pioneer component.
Bear in mind that if the robot is operating correctly, the Pioneer component
should sent periodically something through this output port with a period
of 50 or 100 milliseconds, depending on how the robot has been configured.
Thus, by monitoring the bumpers input port with a watchdog long enough,

140 Chapter 4. Using CoolBOT

it is possible to detect when the robot is “out of line”, i.e., when the con-
nection to the robot has fallen down. In this case the component transits
to silence state.

• bumping: The PF Avoiding component gets into this state when the robot has
collided with an obstacle. Just entering this state, the robot is stopped by sending
a stop command through the high priority commands output port (table 4.1), that
should be connected to the homonym input port of the Pioneer component. Take
into account that a robot hitting an obstacle is an emergency situation, and the
robot should be stopped immediately in order to avoid any harm to it. That is the
reason of using an output port connected to the Pioneer ’s high priority commands
input port, commands sent through it have higher priorities, and therefore, will
be commanded to the robot first. As soon as the component gets into bumping
state and the robot is stopped, the PF Avoiding tries to separate the robot from
the obstacle. To do so, velocity and orientation commands are sent periodically
through the low priority commands output port in order to run away from the
obstacle (timer transition). Once it is detected that the robot is not touching
anything (bumping off transition) the component returns to avoiding state.
Finally, if it happens to be a watchdog timeout in the bumpers input port, in
the same manner that in the avoiding state, the component transits to silence
state (watchdog timeout transition).

• silence: This state is reached if the communication with the robot is lost for
a period of time long enough (the watchdog associated with the bumpers input
port). After that, the component sits idle waiting until the robot “returns to live”,
i.e., the component starts receiving something from it again, in that case, the
component transits to the state where it was previously, avoiding or bumping
(robot up transitions).

4.3.2 The Avoiding Level

The combination formed by the Pioneer and the PF Avoiding components constitutes a
minimum level of obstacle avoidance for a Pioneer robot. The interconnections between
them are displayed in figure 4.8. When this component configuration is executed in our
robot the observable behavior is that the robot remains still if there are no obstacles
close enough. In the event that an obstacle gets closer, the robot will move away from
it, trying to keep always a minimum distance between it and any obstacle (dmax in
equation 4.1). Consequently, this behavior could allow a person to herd the robot, as
it behaves in order to keep this minimum distance from obstacles.

Finally, observe that in this configuration of figure 4.8, the strategic vector is
not being used, the behavior of the robot is completely determined by the PF Avoiding
component. Next section will introduce a new component called Strategic PF that will
make the robot behave in a more elaborated way using the PF Avoiding component’s
strategic vector input port.

4.3. A Reactive Example 141

PIONEER

PF
AVOIDING

sonars/bumpers
sonar positions/ high/low priority

commands

Figure 4.8: The avoiding level.

4.3.3 A Strategic Component

The PF Avoiding component presented in the previous section 4.3.2 endows a mobile
robot with a repulsive behavior against obstacles, even in the case that the robot hits
one of them. But by design, the component allows to be influenced in its behavior
by means of a public input port called strategic vector. Remember that, as it was
commented, at each working period, a vector called strategic vector may be added and
averaged to the repulsive vectors generated by the different obstacles that the robot´s
sonar sensors have detected. Additionally, the PF Avoiding associates a persistence
time to the last strategic vector that has been received, if that time expires without
receiving a new one, the strategic vector is ignored. Thus, once it has expired, only
repulsive vectors are taken into account to command the robot. It is important to
highlight that the modulus of a strategic vector represents the fraction of the maximum
robot translational velocity and it must be in the range of values [0, 1] ∈ R. Bear in
mind that this is also a property that the repulsive vectors induced by obstacles have
too (as equation 4.1 confirms).

The use of strategic vectors in the PF Avoiding makes possible to command the
robot externally to move it in a specific direction. Taking advantage of this feature of
the PF Avoiding component, a new atomic component called Strategic PF component
was designed and built. Its external interface of public output and input ports appears
in figure 4.9 with its non default observable and controllable variables included at
the bottom. In parentheses, the types of input and output ports are indicated by its
respective symbols (consult tables 3.3 and 3.4). Moreover, tables 4.5, 4.6, 4.7, and 4.8
describe respectively its public output and input ports, and its non default observable
and controllable variables.

Likewise the PF Avoiding component, the potential field approach is behind the
functionality of the Strategic PF component. This component operates also periodi-
cally, generating at each period an strategic vector that is sent through its strategic
vector public output port. The component works in four modes that corresponds
directly with the commands that the component may receive through its commands
public input port: inactive, move, goto and docking. Observing the figure 4.10 it is

142 Chapter 4. Using CoolBOT

PF

STRATEGICodometry
(l)

commands

(f)

(mp)
control monitoring

(lmp)

strategic
vector

(g)

(inactive, move,
goto, docking)

ov: period cv: new period

Figure 4.9: Component Strategic PF : external
interface.

Public Output Ports
Name Brief Description
monitoring This is the default monitoring output port by means of which the

component publishes all its observable variables. It is an OLazyMul-
tiPacket.

strategic vec-
tor

This is an OGeneric output port. It has been devised to feed the PF
Avoiding with strategic vectors.

Table 4.5: Component Strategic PF : public output ports.

Public Input Ports
Name Brief Description
control This is the component´s default control port through which control-

lable variables may be modified and updated. It is an IMultiPacket
input port.

odometry This is an IFifo input port through which the component receives
odometry information. This odometry information is usually available
by connecting this input port to the Pioneer component´s homonym
output port.

commands This is an IFifo input port used by this component to receive com-
mands that may change its internal activity. The possible commands
are: inactive, move, goto and docking.

Table 4.6: Component Strategic PF : public input ports.

Non Default Observable Variables
Name Brief Description
period This observable variable indicates at which pe-

riod operates the component.

Table 4.7: Component Strategic PF : non default observable variables.

evident that they correspond also to states of its user automaton. In each mode the
component generates a strategic vector using a different potential field, except in the

4.3. A Reactive Example 143

Non Default Controllable Variables
Name Brief Description
new period Through this controllable variable is possible to

change the working period of the component. It
updates the period observable variable.

Table 4.8: Component Strategic PF : non default controllable variables.

inactive mode where it does nothing.

waiting inactive
inactive

goto

new

timer

odometry

docking

new

timer

odometry

goto

docking new

docking

goto

timer

inactive/reached

inactive/reached

move docking goto

new

inactive

connected
robot

period

period

period

period

goto

docking

move
move

move

move

Figure 4.10: Component Strategic PF : user automaton.

Thus, when the component is in move mode it generates an strategic vector by
means of a uniform potential field which verifies the following equation:

−→un(−→p) = −→v (4.3)

such that −→v is a vector whose modulus verifies that 0 ≤ |−→v | ≤ 1. This is a constant
potential field that generates always the same strategic vector wherever the robot is
situated. Figure 4.11 illustrates an example of an uniform potential field according to
equation 4.3.

In goto mode the component acts differently. In this case the Strategic PF
generates strategic vectors based on an attractive potential field. This is a potential
field centered in a point of the space that follows the following equation:

144 Chapter 4. Using CoolBOT

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

m
e

te
rs

meters

Figure 4.11: Component Strategic PF : uniform potential field.

−→a (−→p ,−→g) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−→u , if d ≥ dmax

d−dmin

dmax−dmin

−→u , if dmin < d < dmax

−→
0 , if d < dmin

(4.4)

such that, −→p is any position in robot coordinates; −→g is the position of the goal also
in robot coordinates; d = |−→g −−→p | is the euclidean distance between −→g and −→p ; −→u =
−→g −−→p
|−→g −−→p | is an unitary vector between −→g and −→p ; dmax is a threshold distance where the

potential field starts to fall in modulus because −→p is too close to the goal point −→g ;
finally, dmin is the minimum distance to the goal where it is possible to be. Figure 4.12

4.3. A Reactive Example 145

displays an example of an attractive potential field described using equation 4.4.

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

m
e

te
rs

meters

Figure 4.12: Component Strategic PF : attractive potential field.

In docking mode the Strategic PF component generates strategic vectors using
a docking potential field centered in a goal point. The docking field is useful to lead a
robot to a specific goal position, but doing the approaching to the goal point keeping
the robot in a range of orientation angles. Mathematically, the docking potential field
is described by the following equation:

146 Chapter 4. Using CoolBOT

−→
d (−→p ,−→g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−→u , if d≥dmax

d−dmin

dmax−dmin

−→u , if dmin<d<dmax and θ−→u ∈ [θa,θb]

d−dmin

dmax−dmin

−→u π
2
, if dmin<d<dmax and θ−→u ∈ (θb,θc]

d−dmin

dmax−dmin

−→u −π
2
, if dmin<d<dmax and θ−→u ∈ [θc,θa)

−→
0 , if d<dmin

(4.5)

such that, −→p is any position in robot coordinates; −→g is the goal point also in robot
coordinates; d = |−→g −−→p | is the euclidean distance between −→g and −→p ; −→u =

−→g −−→p
|−→g −−→p | is

an unitary vector between −→g and −→p ; θ−→u is the angle that −→u forms with the positive
x axis; θa and θb are two angles that determine an angular sector surrounding the
docking goal point where the docking is possible; θc = θa+θb

2
− π is the opposite angle

to θa+θb

2
; −→u π

2
is −→u rotated π

2
(anticlockwise); −→u −π

2
is −→u rotated −π

2
(clockwise); dmax

is a threshold distance where the potential field starts to fall in modulus because −→p
is too close to the goal point −→g ; dmin is the minimum distance to the goal where it
is possible to be. Figure 4.12 visualizes the equation with an example. Docking fields
are common to drive a robot towards a docking station, usually in industrial scenarios,
where the robot should get “parked” in the docking station, and where normally the
robot should approach it from only specific directions [Murphy, 2000].

The Strategic PF component presents the user automaton displayed in figure
4.10 (default automaton transitions and states are not shown). Note that the different
component´s modes of operation correspond to different states in the automaton, they
can be described as follows:

• waiting: This is the user automaton entry state. In it, the component remains
idle, waiting until it gets connected to a Pioneer component instance, through
its odometry public input port (see table 4.6). Once connected the component
transits to the inactive state.

• inactive: The Strategic PF component gets to this state when it is in inactive
mode. Getting to this state the component stops the robot by sending a

−→
0

vector through its strategic vector (note that, even in this case, the PF Avoiding
component will keep the robot avoiding obstacles). In this mode the component
accepts modification of its new period controllable variable (table 4.8) in order
to modify its period observable variable (table 4.7), and consequently its period
of operation (new period transition). Besides of changing its working period,
in this state the component can receive commands through its commands input
port (table 4.6). Depending on which command has been received, it remains in
inactive state, or transits to move, goto or docking states (respectively move,
goto and docking transitions).

4.3. A Reactive Example 147

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

m
e

te
rs

meters

Figure 4.13: Component Strategic PF : docking potential field.

• move: The Strategic PF component stays in this state when it is in go mode.
In this state the component accepts changes of its period of operation (new
period transition), and operates periodically generating strategic vectors based
on a uniform potential field (timer transition). The vector −→v in equation 4.3
is contained in the command that provoked the component to enter in move
state. While the component remains in move mode the vector −→v establishing
the direction and modulus of the uniform potential field can be changed (move
transition) with new move commands. In addition, the component can receive
other commands to change its mode of operation, and consequently to change to
any of the other states (inactive, goto and docking transitions).

• goto: The Strategic PF component remains in this state when it is in goto
mode. Staying in this state the component accepts changes of its working period

148 Chapter 4. Using CoolBOT

(new period transition), and operates periodically generating strategic vectors
based on an attractive potential field (timer transition). The parameters that
govern this attractive field are provided by the goto command that has driven
the component to that state. These parameters are: dmin, dmax and the goal
point −→g (equation 4.4). Receiving new goto commands through the commands
input port, any or all the parameters that define the attractive potential field
can be modified (goto transition). Moreover, the component can receive other
commands to change its mode of operation in order to transit to inactive, move
and docking states (respectively inactive, move and docking transitions).

• docking: The Strategic PF component stays in this state when it is in docking
mode. In this state the component accepts changes of it period of operation
(new period transition), and generates periodically strategic vectors based on
a docking potential field (timer transition) following equation 4.5, where the
different values that defines the potential field are provided by a docking com-
mand received through the component´s commands input port. Such parameters
are: the goal point −→g , the threshold distances dmin and dmax, the angles θa, θb,
and the minimum distance from obstacles (dmax in equation 4.1), because during
docking it may be necessary to get closer to obstacles. New docking commands
received through the commands input port, may modify any or all the param-
eters that define the docking potential field by means of which the component
generates strategic vectors for docking (docking transition). Besides, the com-
ponent may receive other commands to change its mode of operation in order
to transit to inactive, move and goto states (respectively inactive, move and
goto transitions).

4.3.4 A Wander Component

In this point, a new atomic component called Wander will be defined to endow a
robot with a wandering behavior, taking advantage of the components that have been
designed and built so far: the Pioneer, PF Avoiding and Strategic PF components.
The Wander component offers the external interface of public output and input ports
illustrated in figure 4.14. Non default observable and controllable variables appear
at the bottom. In parentheses, the types of input and output port are indicated by
its respective symbols (consult tables 3.3 and 3.4). Tables 4.9, 4.10, 4.11, and 4.12
describe respectively its public output and input ports, and its non default observable
and controllable variables.

Figure 4.15 displays the Wander component´s user automaton. It consists of
one state called wandering. In this state the component operates periodically sending
goto commands (timer transition) through its command public output port (table 4.9),
in order to change the operation mode of the Strategic PF component. In each period
it is sent a goto command with a different goal point −→g which is chosen in an aleatory
way. Evidently the working period should be chosen long enough to allow the robot
to approach a goal point for a while before driving it to another different point in the

4.3. A Reactive Example 149

monitoring
(lmp)

command

WANDER
control

(mp)

(goto)
(g)

ov: period cv: new period
wander point

Figure 4.14: Component Wander :
external interface.

timer

wandering

period
new

Figure 4.15: Component
Wander : user automaton.

next period.

Staying in this state it is also possible to change the period of operation by
means of the new period controllable variable that, in turn, will modify the period
observable variable that governs the component´s working period (new period tran-
sition). Tables 4.11 and 4.12 contains a brief description of the non default observable
and controllable variables that the component offers.

Public Output Ports
Name Brief Description
monitoring This is the default monitoring output port by means of which the

component publishes all its observable variables. It is an OLazyMul-
tiPacket.

command This is an OGeneric output port. It has been devised to send goto
commands to the Strategic PF component.

Table 4.9: Component Wander : public output ports.

Public Input Ports
Name Brief Description
control This is the component´s default control port through which control-

lable variables may be modified and updated. It is an IMultiPacket
input port.

Table 4.10: Component Wander : public input ports.

4.3.5 The Wandering Level

Figure 4.16 shows the combination of the components that would make a Pioneer
robot wander around while avoiding obstacles. This would be a wandering level built
on top of the avoiding level presented in section 4.3.2 and displayed in figure 4.8.
Obviously some operational decisions that should be necessary to made would be the

150 Chapter 4. Using CoolBOT

Non Default Observable Variables
Name Brief Description
period This observable variable indicates at which pe-

riod operates the component.
wander point This observable variable indicates at which

aleatory point the component has decided to
lead the robot.

Table 4.11: Component Wander : non default observable variables.

Non Default Controllable Variables
Name Brief Description
new period Through this controllable variable it is possible

to change the working period of the component.
It updates the period observable variable.

Table 4.12: Component Wander : non default controllable variables.

different operation frequencies of the different components. It is obvious that the
Wander component should work at a low frequency with a period of operation of
maybe minutes. On the other side, the operation period at which the Strategic PF
generates strategic vectors should be short enough to refresh the persistence time of
such vectors in the PF Avoiding component. Clearly, the new persistence controllable
variable of the PF Avoiding component should be chosen accordingly. Bear in mind
also that the faster the PF Avoiding component generates robot commands, the faster
the robot response will be, so the choice of its period of operation should be short
enough to have a response fast enough. Remember that there is a low limit for that
period which is the period at which robot sensory information is received, either 50 or
100 milliseconds, furthermore,several cycles of 50 or 100 milliseconds are necessary to
receive readings from all the sonar sensors available in the robot.

WANDER

PIONEER

PF
AVOIDING

STRATEGIC
PF

sonars/bumpers
sonar positions/

command
goto

odometry

strategic vector/new distance

high/low priority
commands

Figure 4.16: The wandering level.

4.4. What about a Task? 151

4.4 What about a Task?

Quoted from Arkin ([Arkin, 1998], page 267):

“Action-oriented perception requires that perception be conducted in a top-
down manner on an as-needed basis, with perceptual control and resources
determined by behavioral needs.”

Basically, it establishes that the perceptual information that a system should use and
take into account, is driven and determined by the tasks the system must carry out.
Thence, the perceptual information that is necessary in order to accomplish a task de-
termines the computational resources and the sensory information needed in a system.

As commented by Arkin in [Arkin, 1998] perceptual information in behavior-
based systems organize in three general ways:

• Sensor Fission: This is referred to as when a behavior access directly sensory
information from which it extracts the perceptual information it needs. Finally,
based on this information it exerts on system effectors the actions it considers
necessary. Figure 4.17 helps to understand the concept. An example of sensor
fission is the control loop of figure 4.8, where the PF Avoiding component (an
avoiding behavior) extracts the necessary perceptual information it requires, and
generates directly the effector actions the system needs in order to avoid obstacles.

• Sensor Fusion: It is frequent that different sensory information coming from
different sensors provide the same type of perceptual information. Consider, for
instance, a robot that detects the obstacles surrounding it by using three different
sensors: a ring of sonars, a laser range finder, and a camera in a pan-tilt platform.
Consider a behavior that uses that perceptual information in order to emit a
system response by means of effector actions. As the information that comes
from these three different sensory sources may be redundant, complementary
or contradictory, some filtering could be necessary in order to feed the behavior
with perceptual information that fuses and integrates the data coming from these
different sensors. This filtering to fusion perceptual information is what is called
sensor fusion. Figure 4.18 illustrates the idea as it might be put into practise in
terms of CoolBOT, observe how a component fuses the perceptual information
in order to feed another component.

• Sensor Fashion: Frequently a behavior along its runtime life-cycle makes use of
different perceptual information, because it is a requirement imposed by the par-
ticular functionality which is active at that moment, this is what is called sensor
fashion. In figure 4.19 a typical configuration for sensor fashion is displayed. In
the figure, the component (the behavior) uses different perceptual information
depending on its internal state and its internal context of execution. Imagine for
example a behavior that drives a mobile robot from one point to another using
an a-priori map, while avoiding obstacles. Such a behavior is split up in different

152 Chapter 4. Using CoolBOT

phases (for example: door traversing, freeway navigation, corridor navigation and
docking) where the component makes use of different perceptual information in
order to complete each phase successfully.

Behavior
effector
actions

(response)
information
perceptual

Figure 4.17: Sensor fission.

perceptual
information

(source n)

perceptual
information

(source 2)

perceptual
information

(source 1)

Behavior
Perceptual

Fusion perceptual
information

effector
actions

(response)

. .
 .

(fused)

Figure 4.18: Sensor fusion.

effector
actions

(response)

perceptual
information

(source 2)

perceptual
information

(source 1)

perceptual
information

(source n)

Behavior. .
 .

Figure 4.19: Sensor fashion.

From figure 4.17 and 4.18 it is not difficult to see that component configurations
typical of sensor fission and sensor fusion have a straight implementation using the
abstractions and means that CoolBOT provides. As commented, the control loop of
figure 4.8 is typically a sensor fission configuration of components. It is not difficult to
modify the control loop of that figure in order to integrate more sensory information
doing sensor fusion. For example, the information obtained from a laser range finder
could be utilized if a new component that fuses laser and sonar information were
introduced to feed the PF Avoiding component.

4.4. What about a Task? 153

The objective of this section is to illustrate by means of an example how to
organize components in order to carry out a task split up in different phases that use
different perceptual information (sensor fashion). The concrete example that will be
shown here has been inspired by the example of perceptual sequencing commented
in Arkin [Arkin, 1998] (pages 279-283). Our example consists in making the robot
used in the previous section (section 4.3) perform the task of going home, i.e., going
to a homing area where it should dock. The task requires also that the robot avoids
obstacles.

robot

obstacles

found
light big pattern

found

light
tracking

tracking
big pattern

docking point

docking
pattern
found

docking

light
not found

not found
light

robot trajectory

pattern on
the wall

light

moving

Figure 4.20: The Go Home task: the scenario.

Figure 4.20 displays the scenario considered for this task, a room with a docking
area in one side of the room. This docking area is indicated by a panel situated on one
of the room walls, and a bright light above it. On the panel there are two interleaved
patterns: a big pattern which is a big “H” letter, and a small pattern composed by
two circles called the docking pattern. They appear in figure 4.21, they are referred
together as the homing pattern. Thus, there are three main perceptual landmarks in
the scenario that will be used by the robot to perform the task of going home. The
first landmark is the light located just above the panel where the homing pattern is
stuck. It can be detected from nearly any point in the room using a camera mounted
in a pan-tilt platform placed on the robot (see figure 3.41). The second landmark is
the big “H” letter, the big pattern, which is easily detected from nearly any position in
the room when the robot looks frontally at it. The third one, is the docking pattern of
circles which should be detected when the robot is close to the homing position. This
is a point situated at a specific distance (for instance, half a meter) from the panel,
just in front of the middle point between the docking pattern’s circles. The circles that
form the docking pattern verify that at the minimum distance to the wall both are
inside the robot camera´s field of vision.

As it is shown in figure 4.20 the task is divided into four main phases: moving,
where the robot just moves for a while to find a position where it is able to detect
the light above the homing pattern; light tracking, a phase where once the light is

154 Chapter 4. Using CoolBOT

detected the robot servo navigates by tracking it to get closer in order to detect the
big “H” letter; big pattern tracking, as soon as the robot localizes visually the big
pattern, it servo navigates towards it to reach a position where it is able to recognize
visually the docking pattern; docking, finally, when the robot is so close to the docking
area that it recognizes the docking pattern, the robot navigates more precisely (slower)
to get docked conveniently at a specific distance from the wall where is situated the
docking pattern; in this last phase the robot utilizes the sonar rings available on the
robot to control approximately the distance to the wall.

We will make use of most of the

Figure 4.21: The Go Home
task: the homing pattern.

components presented so far: the Pio-
neer component, the PF Avoiding com-
ponent, and the Strategic PF compo-
nent. Besides, two new components will
be designed and built: the Vision Server
component, and the Go Home compo-
nent, that once integrated together will
perform the required task. These two
new components will be introduced in the
next sections.

4.4.1 A Vision Component

In order to obtain visual perceptual information from the camera situated in the pan-
tilt support placed on top of the robot, an atomic component called Vision Server
has been designed. Its external interface appears in figure 4.22, and as in previous
figures, the types of output and input port are indicated between parentheses (consult
tables 3.3 and 3.4). The output and input ports that conform their external interface
are briefly explained in tables 4.13 and 4.14. This component does not need any new
additional observable or controllable variables.

monitoring
(lmp)

control
(mp)

odometry
(f)

commands
(f)

images

SERVER

VISION

(p)

events
(g)

Figure 4.22: Component Vision Server : external
interface.

The Vision Server component´s user automaton is shown in figure 4.23. Tran-
sition to default automaton states are not displayed. The Vision Server component
has three modes of operation that correspond to the states appearing in the figure:

4.4. What about a Task? 155

Public Output Ports
Name Brief Description
monitoring This is the default monitoring output port by means of which the com-

ponent publishes all its observable variables. It is always an OLazy-
MultiPacket.

events This is an OGeneric output port through which the component sig-
nalizes some events, such as the lost of a visual target it was tracking,
or when it has finished a process of visual scanning.

images This is an OPoster output port. This component serves time-stamped
images, together with the pose of the camera in robot coordinates at
which the image was sampled, and, if necessary, the image coordinates
of the pattern that has been found in the image.

Table 4.13: Component Vision Server : public output ports.

Public Input Ports
Name Brief Description
control This is the component´s default control port through which control-

lable variables may be modified and updated. It is always an IMulti-
Packet input port.

odometry This is an IFifo input port through which the component receives the
odometry of the robot, in order to calculate the pose associated to the
images that it publishes through its images output port.

commands This is an IFifo input port. The component receives through it com-
mands that affects the component’s modes of operation. There are
three different commands: inactive, scan, next and track.

Table 4.14: Component Vision Server : public input ports.

• inactive: This is the entry state of the user automaton. In this state, the
component remains idle waiting for a command through its commands input port
that would drive it to the other modes of operation, corresponding to scanning
and tracking states (scan and track transitions respectively).

• scanning: When the component gets into this state it is because it has received a
scan command through its commands input port. In this state the component will
command the pan-tilt camera to make a scan delimited by two pan angles (tilt is
not used). During the scanning, the component will take image samples at specific
angles positions, will associate them with a time stamp and the pose of the camera
in robot coordinates, and will publish them using the component´s images output
port. The scan command that drives the component to this state must provide
the pan angles that will limit the scan, and the angle increment that will be used
for sampling images along the scanning process. Additionally, it must receive a
next command through its commands input port to sample each image along the
whole process (next transition). Once completed the scanning, the component
emits a scan-finished event through its events output port and returns to inactive

156 Chapter 4. Using CoolBOT

tracking

scanning

track

scan

scan

track

scan

track

inactive

inactive
finished/

scan

inactive/
lost

(watchdog
timeout)

next

timer

Figure 4.23: Component Vision Server : user automaton.

state (scan finished transition). Moreover, the component can be explicitly
commanded to other user automaton states through the commands input port
(inactive and track transitions). If a new scan command is received, a new
scanning is started (scan transition). For all these cases, when the component
is commanded to other state or when a new scanning is started the component
sends also a scan-finished event through the events output port.

• tracking: The component enters this state when it receives a track command.
There are two types of track commands: track-pattern, that makes the compo-
nent find an image pattern in sampled images; and track-light, that makes the
component find the most brighter area in images. Track commands indicates
also a working period for the component when it is in this mode of operation.
Initially, the target, either the pattern or the light, should be in the camera´s
field of view, and once detected the camera tracks it using the pan-tilt module
where the camera is mounted. From that moment on, the component periodically
tries to find it on the field of view and acts conveniently in order to track the
target (timer transition). Each time the target is detected the sampled image
together with a time stamp, the pose of the camera, and the target’s location
in image coordinates is published through the component´s images output port.
Traking is supported by a Kalman-filtering approach to keep the pattern inside
the camera´s field of view [Hernández-Tejera et al., 1999]. Additionally, in case
of tracking as target, an image pattern, the component implements and adaptive

4.4. What about a Task? 157

correlation technique [Guerra-Artal, 2002] for tracking image patterns. By the
reception of a new track command the target and/or the frequency of opera-
tion may be changed (track transition). Additionally, staying in this state the
component may be ordered to go to inactive and scanning receiving the corre-
sponding commands through the component´s commands input port (inactive
and scan transitions respectively). If, during tracking, the component is not able
to find the target in sampled images, the component emits a lost event thorugh
the events input port and transits to inactive state (lost transition).

4.4.2 A Go Home Component

In figure 4.24, it is displayed the external public interface of the atomic component
called Go Home which is the component that controls and sequences the different
phases of operation of the homing task (figure 4.20). Like the Vision component, neither
does this component need any non default observable and controllable variables. In
tables 4.15 and 4.16 brief descriptions of its public output and input ports are given.

monitoring
(lmp)

GO

HOME command
strategic

(g)

vision
command

(g)

images
(p)

sonars
(p)

positions
(p)

sonar

control
(mp)

events
(f)

Figure 4.24: Component Go Home: external
interface.

Public Output Ports
Name Brief Description
monitoring This is the default monitoring output port by means of which the com-

ponent publishes all its observable variables. It is always an OLazy-
MultiPacket.

strategic com-
mand

This is an OGeneric output port. It has been devised to command
the Strategic PF component.

vision com-
mand

This is also an OGeneric output port through which the component
may send commands to the Vision Server component.

Table 4.15: Component Go Home: public output ports.

The Go Home component has the user automaton that appears in figure 4.25
(default automaton transitions are not shown, except for the end state). As we can see

158 Chapter 4. Using CoolBOT

Public Input Ports
Name Brief Description
control This is the component´s default control port through which control-

lable variables may be modified and updated. It is always an IMulti-
Packet input port.

events This is an IFifo input port through which the component can be
signaled of the occurrence of events by the Vision Server component,
it should be connected to the homonyn output port of this component.

sonar posi-
tions

This is an IPoster input port. Through this port the component
connects directly to the Pioneer component´s sonar positions output
port that publishes the position of the robot sonar sensors in robot
coordinates.

sonars This is an IPoster input port. It is used to receive sonar readings
from the robot by means of connecting to the Pioneer component´s
sonars output port.

images Through this port the component receives time stamped images with
their associated pose (and a target location – whether the brighter
area in the image, or a specific image pattern – in image coordinates)
from the Vision Server component. It is an IPoster input port.

Table 4.16: Component Go Home: public input ports.

the different phases that have been considered for the completion of the going-home
task in figure 4.20 correspond clearly to different states in the automaton. Now, in the
following paragraphs the states that conform the user automaton are described:

found

docking
pattern

big
pattern
found

(lost)
events

(lost)
events

(lost)
events

waiting

moving

vision &
robot

connected

timer

found

images

images

light
tracking

light
tracking

big pattern

sonars

images

docking end

images

dockedsearching

events
(scanning
finished)

Figure 4.25: Component Go Home: user automaton.

• waiting: This is the user automaton entry state where the component waits for
being connected to the Vision Server and Pioneer components. As soon as it is
connected the component transits to the light searching state.

• light searching: In this state the robot remains stationary, and the component
sends a scan command to the Vision Server component which is ordered to do
a complete visual scanning, sampling images along the whole range of angles

4.4. What about a Task? 159

which is possible to reach moving the pan joint of the pant-tilt unit to which the
camera is attached. During scanning, images are sampled and received by the
component with its corresponding pose in robot coordinates (images transition).
For each image a brighter area detection algorithm is applied to detect the light
situated above the homing area (figure 4.20), if the light is not found a next
command is sent to the Vision Server in order to make it sample a new image.
On the opposite, if the light is found in one of the images, the robot gets oriented
to that direction, and the component transits to light tracking state (found
transition). If the whole scanning range is completed without finding any light in
sampled images (because maybe it is occluded by an obstacle), the robot transits
to moving state (events transition).

• moving: In this state the component chooses an aleatory direction and makes
the robot move in this direction for a while. How long the robot is moving is
established at instantiation time, and obviously, it depends on the velocity we
want the robot to move. As soon as this moving time has expired the component
returns to light searching state to continue looking for the light again (timer
transition). To move the robot in an the aleatory direction the component sends
a move command to the Strategic PF component. Notice that move command
implies the application of an uniform potential field (Strategic PF, section 4.3.3),
so the robot will start moving just towards an aleatory direction at a specific
velocity for a specific amount of time.

• light tracking: In this state the component makes the robot to servo-navigate
towards the homing area using visual tracking by means of the Vision Server
component. At the very moment of entering this state, the component sends
a track-light command to the Vision Server component, in order to keep the
light in the camera´s field of view using the pan-tilt unit. Remember that the
track-light command that initiates visual tracking indicates also at which period
of operation the visual component must track the light. During light tracking,
through the images input port the component accesses the different images where
the light is found. Each image is accompanied by a time stamp, its corresponding
camera pose in robot coordinates, and the location of the brighter area in images
coordinates. (images transition). Using this information the robot is led to go
towards the homing area utilizing move commands sent through the strategic
command output port (sent to the Strategic PF component). Additionally, the
component searches in each image it receives the pattern with the big “H” letter
of figure 4.21. The component has a pool of patterns corresponding to the big
“H” letter seen from different distances, the component tries to find any of them.
In such a case, the component is driven to big pattern tracking state (big
pattern found transition). If the Vision Server component it is not able to
track the light and loses it, the component stops the robot, and transits to light
searching state (events transition).

• big pattern tracking: This state is analogous to light tracking state, because
the component also carries out visual tracking, but instead of tracking the light

160 Chapter 4. Using CoolBOT

above the homing pattern, it tracks one of the patterns of the pool of patterns
with the big “H” letter (figure 4.21) it found in the previous light tracking
state. In order to do so, a track-pattern command is sent to the Vision Server
component indicating also at which period visual tracking should be carried out.
From that moment on, the component will access periodically new sampled im-
ages containing the tracked pattern (images transition). Like in the previous
state, each image has its own time stamp, a corresponding camera pose in robot
coordinates, and also the location of the pattern in image coordinates. Using this
information the component drives the robot towards the homing position. Along
the tracking process, on each image the component tries to find the docking pat-
tern (the two circles in figure 4.21). The component has also a pool of patterns
containing samples of this pattern seen from different distances. If it succeeds
finding one of them, the component transits to docking state (docking pat-
tern found transition) that constitutes the last phase of the going-home task.
If, by any circumstance, the Vision Server component fails to track the pattern
and loses it, the component stops the robot and, returns to light tracking state
(events transition).

• docking: In this state the component drives the robot tracking visually the
docking pattern found in the previous state in order to get situated at the docking
point of figure 4.20. Evidently, the component gets to this state when the robot is
close enough to find visually any of the patterns of the pool of docking patterns.
The component makes use again of a track-pattern command sent to the Vision
Server component, in order to receive periodically new sampled images containing
the docking pattern, each one having a time stamp, an associated camera pose
in robot coordinates, and the location of the pattern on the image (images
transition). Equally, like in light tracking and big pattern tracking it uses
this information to drive the robot towards the docking position. The process
of docking is finished when the docking pattern occupies a specific big area on
the images where the pattern has been found. In order to confirm that, the
robot also monitors the distance between the robot and the room wall, where
the panel containing the docking pattern, is situated. For that it makes use of
the information coming through its sonars input port corresponding to the sonar
readings published by the Pioneer component. As soon as it is close enough to
the wall, and the pattern is big enough on the images, the component considers
it has docked correctly, and the task finishes successfully transiting to end state.
Evidently the robot is stopped at this point, and the Vision Server and Strategic
PF components are commanded to get inactive. If the Vision Server component
fails tracking the docking pattern, the component stops the robot and returns to
big pattern tracking state (events transition).

• end: This is the end state of the default automaton of figure 3.8. In this state
the component has finished successfully its operation.

Note that the Go Home component codifies in its user automaton the sequenc-
ing of phases in which the Go Home task has been split up, and how in each phase

4.4. What about a Task? 161

different perceptual information, and different algorithms are used on that perceptual
information. Therefore, it is evident that in CoolBOT sensor fashion and the sequenc-
ing of different phases that use different perceptual information at different instances
of time during the performing of a task with different execution contexts are easily
mapped in the automaton of a component.

4.4.3 The Go Home Task

Figure 4.26 shows a feasible configuration of components that would carry out the task
of making our robot go to a homing area and get docked. Contrarily to the previous
reactive examples shown in figures 4.8 and 4.16 where all the components were run at
the same priority level (priority 8 at normal policy), and due to the complexity of the
task at hand we have established three priority levels between the components of figure
4.26. At the highest one (priority 15 at normal policy) we have situated the Pioneer,
the PF Avoiding and the Vision Server components, at the medium level (priority 11
at normal policy) we set the Strategic PF component, and at the lowest priority level
(priority 8 at normal policy) there was only one component running, the Go Home
component.

PIONEER

PF
AVOIDING

STRATEGIC
PF

sonars/bumpers

GO strategic command

sonar positions/

sonar positions/

HOME
VISION
SERVER

odometry
odometry

strategic vector/new distance

commands
vision

high/low priority
commands

sonars

images/
events

Figure 4.26: The Go Home task.

Observing figure 4.26, it is easy to see that the logic and control of the going-
home task resides completely in the Go Home component. Using the same configura-
tion of components but interleaving another component instead of it, would make the
robot do another task, like for instance, look for an specific object. Obviously adding
new functionalities to the Visual Server component will endow the system with the
possibility of having more perceptual information what will make the robot behave in
a more elaborated way, and perform more complex tasks.

162 Chapter 4. Using CoolBOT

4.5 A More Formal Approach for Tasks

In this section, it is presented how it might be possible, using CoolBOT, to make a de-
scription of tasks in a more formal way. The formal approach that has been selected has
been inspired by Kos̆ecká in [Kos̆ecká et al., 1997] and [Kos̆ecká, 1996], who exploits
the idea for representing robotic tasks as network of processes, as initially proposed
by Lyons in its RS (Robot Schemas) model [Lyons and Arbib, 1989] [Lyons, 1990].
In Kos̆ecká´s work, tasks are considered as networks of processes modelled as au-
tomata conforming a finite state machine model. Additionally, the description and
specification of tasks is done by means of a small set of operators of process alge-
bra which allows defining tasks as networks of processes in a formal way. This set of
process algebra operators defines six different operators to specify task compositions:
sequential composition, parallel composition, conditional composition, dis-
abling composition, synchronous recurrent composition and asynchronous
recurrent composition.

Evidently, due to the fact that CoolBOT components are also automata, the
approach proposed by Kos̆ecká´s work should be easily applied to CoolBOT com-
ponents. In order to define tasks in the same terms and with the same constructs
proposed by Kos̆ecká´s work, six different compound components implementing each
of the Kos̆ecká´s operators will be presented along the rest of this section. After that,
we will illustrate how to describe the examples presented in the previous sections 4.3
and 4.4 in terms of these compound components.

Some terminology must be introduced first in order to understand the different
process algebra operators as they will be formally defined. Thus, it is said that a
component has performed a successful execution, if it has carried out a complete task
execution getting correctly to the end state of its automaton (figure 3.8). Alternatively,
it is said that it has terminated a failed execution, if it has finished task execution
getting to running error state corresponding to an exception which has become locally
unrecoverable. In addition, it is said that it has been aborted, if it has been driven to
suspended state in order to be re-started or killed.

4.5.1 Sequential Composition

The sequential composition operator is represented by the symbol ;, this is the
simplest operator and is defined in the following terms. Let a and b be two components,
whether atomic or not, then the compound component c = a; b is such that an instance
of c, ci, behaves like an instance of a, ai, until this one finishes, and then it behaves
like an instance of b, bi. When bi finishes, ci finishes with the same state as bi.

The compound component that implements the sequential composition operator
has a supervisor with the user automaton shown in figure 4.27 (default automaton
transition and states are not shown, except for end and running error states). At
instantiation time the component must be provided with the components over which
the operator will be applied. Once it has been instantiated and ordered to run, it, in

4.5. A More Formal Approach for Tasks 163

turn, commands the first component to run. Then it waits for the finalization of its
execution, whether successfully or not. After that, it orders the second component to
run and waits for its conclusion, and depending on if it has been successful or not, the
whole compound component finishes accordingly.

first second end
finish success

fail

error
running

Figure 4.27: Sequential composition: user
automaton.

This operator is clearly aimed to situations where we want two components to
be executed sequentially in an unconditional way, no matter what are their final results.
An example would be to order a robot to go sequentially to two points. Imagine that
we have a component called Goto which performs the task of driving our robot to go
to a specific point in robot coordinates. So we could do something like:

. . .
Component ∗ gotoAB=

new Sequent ia lCompos i t ion (new Goto (pointA) ,
new Goto (pointB)) ;

. . .

making the robot going first to pointA, and then to pointB, but even in the case, it
does not reach the first point, we want it to have a try for the second one. Obviously,
the SequentialComposition class is the compound component implementing the se-
quential composition operator, note that this component maps all output and input
ports of its operands in its external interface, so it adapts its external interface in order
to accommodate the operands it receives at instantiation time. The other compound
components implementing the rest of process algebra operators adapt their external
interface in the same way.

4.5.2 Conditional Composition

The conditional composition operator is represented by the symbol :, and is defined
in the following terms. Let a and b be two components, whether atomic or not, then
the compound component c = a < v >: b(v) is such that an instance of c, ci, behaves
like an instance of a, ai, until this one finishes successfully computing v as a result of
its processing, then it behaves like an instance of b, bi, which uses v as input data.

164 Chapter 4. Using CoolBOT

When bi finishes, ci finishes with the same state as bi. If ai finishes unsuccessfully, ci

finishes with the same state as ai.

The supervisor of the compound component that implements the conditional
composition operator has the user automaton displayed in figure 4.28 where default
automaton transitions and states are not shown (except for end and running error
states). Observe the differences between the automaton in the figure, and the au-
tomaton corresponding to the sequential operator in figure 4.28, note that the main
difference is that the second component is run if the first one succeeds in its execution.
There is another difference which is not evident from the figure, but it is clear in the
formal definition of both operators: in a conditional composition if the first compo-
nent finishes successfully it returns a result (v in the previous paragraph) which is in
turn fed to the second component when it is ordered to run. Evidently, to return a
result of a successful execution it is possible to use the default result observable vari-
able (table 3.1 in section 3.3.2 in chapter 3), but there is not any default controllable
variable to feed a component with data when it starts running. To do so, components
involved in conditional compositions that must receive such information should define
a controllable variable aimed to that and called starting data.

first second end
success

fail

error
running

fail

success

Figure 4.28: Conditional composition: user
automaton.

A clear application of a conditional composition is when we want a component
to be run, if a previous one has been executed with successful results. An example
might be something like:
. . .
Component ∗ gotoPattern=

new Condit ionalComposit ion (new Loca l i z e (pattern) ,
new NavigateTo (pattern)) ;

. . .

such that, for example, Localize is a component that localizes a pattern using the
pant-tilt camera mounted on the robot, and NavigateTo is a component that servo-
drives the robot navigating towards the pattern doing visual tracking with the pan-tilt
camera. Obviously if the pattern is not found the operator fails because it was not
able to find the pattern, and, thus, it is unable of accomplishing the second part of the
composition. The ConditionalComposition class is the compound component that
implements the conditional operator, and like the SequentialComposition class at

4.5. A More Formal Approach for Tasks 165

instantiation time it also adapts its external interface to the output and input ports of
its operands.

4.5.3 Parallel Composition

The parallel composition operator is represented by the symbol ‖, and is defined
in the following terms. Let a and b be two components, whether atomic or not, then
the compound component c = a‖b is such that an instance of c, ci, behaves like an
instance of a, ai, and an instance of b, bi, running in parallel (or concurrently), and the
state of the composition is a state pair which combines the states of both instances (see
[Kos̆ecká, 1996] for details); ci finishes with the same state as the last finished instance,
either ai or bi. If ci is suspended both instances are suspended as well.

The compound component that implements the parallel composition operator
presents a supervisor with the user automaton illustrated in figure 4.29, default au-
tomaton transitions and states are not displayed (except for end and running error
states). This component just runs in parallel (or concurrently) the two components
that constitute its operands, and then wait for them to finish their execution. De-
pending on the result of the execution of the component that has finished last, the
composition will terminate either successfully, or failing, transiting respectively to end
or running error states.

both

end

running
error

successful
last

last
failed

Figure 4.29: Parallel composition:
user automaton.

An example of the application of the parallel composition operator is when we
want two components to be executed in parallel or concurrently in order to perform a
specific activity in a coordinated way, as for example:

. . .
Component ∗ doMapping=

new Para l l e lCompos i t i on (new Explore () ,
new ConstructMap ()) ;

. . .

where Explore is a component that makes a robot wander around and ConstructMap is
another component that builds a map of the environment. The ParallelComposition
class is the compound component which implements the parallel composition operator,

166 Chapter 4. Using CoolBOT

and like the other process algebra operators, at instantiation time it adapts its external
interface to the output and input ports of its operands.

4.5.4 Disabling Composition

The disabling composition operator is represented by the symbol �, and is defined in
the following terms. Let a and b be two components, whether atomic or not, then the
compound component c = a�b is such that an instance of c, ci, behaves like an instance
of a, ai, and an instance of b, bi running in parallel (or concurrently), and its state is
the state pair conformed by the states of both instances. The compound instance ci

finishes when one its local components finishes, and it takes the same state as this first
finished instance, either ai or bi, the other is aborted.

The supervisor of the compound component implementing to the disabling com-
position operator has the user automaton displayed in figure 4.30, default automaton
transitions and states are not displayed (except for end and running error states).
Like in the parallel composition, in this compound component the components that
constitute the operands of the composition are ordered to run in parallel (or con-
currently), but in this case, the supervisor waits only for the termination of one of
them. Once one of them has finished, the supervisor aborts the other one, and skips
to end or running error states depending on how the component that finished first
has terminated, either successfully or failing.

both

end

running
error

successful

failed

first

first

Figure 4.30: Disabling
composition: user automaton.

An example for this type of composition is, for instance, the component called
Explore previously commented, and a component called Localize previously com-
mented as well. Thus we could do something like:
. . .
Component ∗ l o c a l i z ePa t t e r n=

new Disabl ingCompos it ion (new Explore () ,
new Loca l i z e (pattern)) ;

. . .

where we would have the robot wandering around and looking for a pattern. If the
pattern was found, the whole composition would finish. Obviously the DisablingCom-
position class is the compound component corresponding to the disabling composition

4.5. A More Formal Approach for Tasks 167

operator, and like the other components implementing process algebra operators pre-
sented so far, it adapts its external interface to the output and input ports of the
operands it receives at instantiation time.

4.5.5 Synchronous Recurrent Composition

The synchronous recurrent composition operator is represented by the symbol :;,
and is defined in the following terms. Let a and b be two components, whether atomic
or not, then the compound component c = a < v >:; b(v) is is recursively defined as
a < v >:; b(v) = a < v >: (b(v); (a < v >:; b(v))).

In figure 4.31, we can see the user automaton corresponding to the supervisor
corresponding to the compound component that implements the asynchronous recur-
rent composition operator. Default automaton transition and states are not displayed
in the figure (except for end and running error states). Observing the figure, ini-
tially the component that constitutes the first operand in the composition is run, if
its execution is successful, then the second component (the second operand) is com-
manded to run. Once that second one has finished, whatever has been its result, the
first component is run again, and the whole loop repeats indefinitely until the first
component fails. In such a case, the whole composition finishes transiting to running
error state. Note that like in the conditional composition operator, each time the first
component finishes successfully, it may generate data as a result of its execution that,
then, is fed it to the second component when it starts running.

first second
success

fail

finish

running
error

Figure 4.31: Synchronous recurrent composition:
user automaton.

An example of this composition might be the following:
. . .
Component ∗ gotoPattern=

new SynchronousComposition (new Loca l i z e (pattern) ,
new NavigateTo (pattern)) ;

. . .

where the same components used in the example given for the conditional composition
operator are used, the difference is that in this case the robot keeps trying to navigate
towards the pattern while it can localize the pattern. It will finish its navigation only
when it fails localizing the pattern. The SynchronousComposition class is the com-
pound component that implements the synchronous recurrent composition operator,
and like the rest of operators, it adapts its external interface to the output and input
ports of the operands with which it has been instantiated.

168 Chapter 4. Using CoolBOT

4.5.6 Asynchronous Recurrent Composition

The asynchronous recurrent composition operator is represented by the symbol ::,
and is defined in the following terms. Let a and b be two components, whether atomic
or not, then the compound component c = a < v >:: b(v) is such that is recursively
defined as a < v >:: b(v) = a < v >: (b(v)‖(a < v >:: b(v))).

The compound component that implements the asynchronous recurrent compo-
sition operator presents a supervisor having the user automaton appearing in figure
4.32 where default automaton transition and states are not displayed in the figure (ex-
cept for end and running error states). In this composition, the supervisor initially
runs the component that constitute the first of its operands. Once it has finished, if it
succeeded, then the supervisor runs in parallel (or concurrently) the second component
(the second operand), and again, the first component. From that moment on, each time
the component corresponding to the first operand finishes successfully, a new instance
of the second operand, and the first operand again are run in parallel (or concurrently).
The supervisor keeps doing that indefinitely until the first operand fails. In that case
the compound component, transits to the state called waiting in the figure. At that
point the component just wait for the termination of all the instances of the second
operand that has been ordered to run in the previous state called main. Once all of
them has finished the whole composition will transits to end or running error states
accordingly to how the last one has terminated. Like in the conditional operator, when
each execution of the first operand finishes successfully it may generate data as a result
of its task execution. In that case, those data are fed into each instance of the second
operand when they get started.

successfull
first

first
failed

main

end

waiting

running
error

last
failed

successfull
last

Figure 4.32: Asynchronous recurrent composition:
user automaton.

An example of this composition might be the following:
. . .
Component ∗ gotoPattern=

new AsynchronousComposition (new Local izeNewPattern (patterns ,
foundPatterns) ,

new Track ()) ;
. . .

where LocalizeNewPattern is a component that visually localizes a pattern included
in the set patterns but not included in foundPatterns. Each time this component

4.5. A More Formal Approach for Tasks 169

finishes successfully finding a pattern, it subtracts the pattern from patterns and
adds it to foundPatterns, and returns the pattern. After that the asynchronous
composition operator instantiates a new Track component that makes the robot track
visually the found pattern. Then it repeats the operation until LocalizeNewPattern
finds all the patterns in patterns, or until it is not able to find any one else. Execution
of the whole composition finishes when the last instantiated Track component loses its
target. Using this example the robot is able to visually follow multiple patterns, and
keep tracking until it loses all of them. Evidently, the aynchronousComposition class
is the compound component that implements the asynchronous recurrent composition
operator, and like the rest of operators, it adapts its external interface to the output
and input ports of the operands with which it has been instantiated. Observe that,
contrarily to other operands, and due to the fact that this operand creates new instances
of its operands, usually it is necessary a kind of shared memory between them to keep
the consistence of the execution of the different instances. In the example this shared
memory was the two sets of patterns: patterns and foundPatterns.

Finally it is important to comment here that for all compound components
presented so far that implement this small set of process algebra operators, if the
operand that finally determines the last state of the composition, generates data as a
result by means of its default result observable variable, the composition will return
such data as result of the execution of the whole composition.

4.5.7 Using the Operators

Now we will show how the different configurations of components of figures 4.8, 4.16
and 4.26 can be formulated in terms of the process algebra operators presented along
this section. Thus, for the configuration of figure 4.8, a code like this will be possible:

. . .
Component ∗ r eac t i veAvo id ing=

new Para l l e lCompos i t i on (new Pioneer (”/ dev/ ttyS0 ”) ,
new PFAvoiding (/ / working per iod

100 , // m i l l i s e c ond s
// minimum d i s t anc e to ob s t a c l e s
300 , // m i l l ime t e r s
// p e r s i s t e n c e time
1000 // m i l l i s e c ond s

)) ;
. . .

for having the robot wandering around a bit as figure 4.16 shows, we would have:

. . .
Component ∗ r eac t i veAvo id ing=

new Para l l e lCompos i t i on (new Pioneer (”/ dev/ ttyS0 ”) ,
new PFAvoiding (/ / working per iod

100 , // m i l l i s e c ond s
// minimum d i s t anc e to ob s t a c l e s
300 , // m i l l ime t e r s
// p e r s i s t e n c e time
1000 // m i l l i s e c ond s

)) ;
Component ∗ s t rateg icWithAvoid ing=

new Para l l e lCompos i t i on (react iveAvo id ing ,
new Strateg icPF (/ / working per iod

170 Chapter 4. Using CoolBOT

500 // m i l l i s e c ond s
)) ;

Component ∗ wanderAround=
new Para l l e lCompos i t i on (strateg icWithAvoid ing ,

new Wander (/ / working per iod
300000 // m i l l i s e c ond s

)) ;
. . .

and for the Go Home task configuration shown in figure 4.26:

. . .
Component ∗ r eac t i veAvo id ing=

new Para l l e lCompos i t i on (new Pioneer (”/ dev/ ttyS0 ”) ,
new PFAvoiding (/ / working per iod

100 , // m i l l i s e c ond s
// minimum d i s t anc e to ob s t a c l e s
300 , // m i l l ime t e r s
// p e r s i s t e n c e time
1000 // m i l l i s e c ond s

)) ;
Component ∗ s t rateg icWithAvoid ing=

new Para l l e lCompos i t i on (react iveAvo id ing ,
new Strateg icPF (/ / working per iod

500 // m i l l i s e c ond s
)) ;

Component ∗ addingTheVis ionServer=
new Para l l e lCompos i t i on (strateg icWithAvoid ing ,

new Vi s i onServe r ()) ;
Component ∗ goHome=

new Disabl ingCompos it ion (addingTheVisionServer ,
new GoHome()) ;

. . .

which finishes when the GoHome instance finishes. It is important to notice that the
compound components corresponding to the different process algebra composition op-
erators do not make any mapping between their operands, except for adapting their
external interfaces to accommodate the output and input ports of them. Port con-
nections among operands need be done by the user/developer in order to run such
configurations conveniently.

Chapter 5

Conclusions and Future Work

Along this document a new framework to facilitate the programming of robotic systems
has been presented. In this final chapter we will draw some conclusions about where
this work has brought us, and we will outline future lines of development.

5.1 Introduction

Traditionally software integration efforts when programming robotic systems has been
undervalued. However the heterogeneity of the problems that is necessary to face
provokes that an important effort during the development of this kind of systems must
be devoted to system integration, mainly to system´s software integration. Software
integration for robotic systems has been one of the main problems to which the work
presented in this document has been addressed. Nonetheless, some other problems
common in the field of programming robotic systems have been taken into account as
well. In the rest of this chapter we will comment with more detail where we think
we have got to. Thus, in the next section (section 5.2) some final comments will be
given about other approaches to the same problem that have been carried out, or are
under development in other laboratories, and that we consider closer to the approach
proposed in this document. The following section (section 5.3) is a summary of the
conclusions we have gathered from the work presented here. Finally, in section 5.4, we
will comment briefly which future trends the work presented in this document might
follow.

5.2 Final Comments

5.2.1 SmartSoft

SmartSoft [Schlegel and Wörz, 1999a] [Schlegel and Wörz, 1999b] is a framework
aimed at providing components for building robotic systems that we have already com-

171

172 Chapter 5. Conclusions and Future Work

mented in chapter 2. We consider this framework quite close to the work we present in
this document, so we would like to make some further comments taking into account
what was said in chapter 2, and also its most recent changes [Schlegel, 2003].

By design, SmartSoft does not impose any restrictions on the internal archi-
tecture of the modules it uses to model systems and, in this sense, they are modelled
as opaque units. From now on, we will refer indistinctly to SmartSoft modules as
components.

The only organizational principles provided by the framework occur at the com-
munication level. In SmartSoft components interact using a small set of basic com-
munication patterns that implement several client/server, publisher/subscriber and
master/slave protocols. In its most recent version SmartSoft implements the following
primitives for communication patterns: send (the former command primitive), query,
push-newest (the former autoupdate newest primitive), push-timed (the former autoup-
date timed), event, wiring (this is a new primitive) and state (the former configuration
primitive). As was commented, the send and query patterns implement, respectively,
a one-way and request/response interaction. Push-newest and push-timed are used,
respectively, to distribute data from one producer to n consumers on an irregular or
regular basis. The event pattern is used for asynchronous notification of events. The
wiring and state patterns are devoted to control and coordination issues. The wiring
pattern is a new pattern that provides support for connecting components dynamically,
i.e. at runtime. The state pattern is used for setting up a basic activity coordination
mechanism cancelling blocking calls or forcing state changes in modules.

SmartSoft has some strong points of coincidence with CoolBOT. Both frame-
works conceived a perception-action system as a network of components whose func-
tionality and capabilities arise from the coordinated interaction of individual compo-
nents. And for that purpose both frameworks provide a reduced set of communication
patterns, or ICC mechanisms as termed in CoolBOT, that essentially implement sim-
ilar basic set of communication protocols with an emphasis on asynchronicity. Both
frameworks also hide the difficult issues of concurrency and synchronization to the pro-
grammer. There are, however, some differences. The most noticeable is that CoolBOT
provides the concept of port type as a second layer over the basic low-level communi-
cation patterns. Fifos, posters, etc. are readily available on CoolBOT while they must
be implemented by the programmer in SmartSoft. Certainly, CoolBOT could have left
the task of implementing these ports to programmers, but that would have been a very
frequent source of programming errors and - more importantly - there would not be
warranties about the interoperability of two components communicating through ports
of the same type, as far as they had been implemented by different programmers.

Another important difference between SmartSoft and CoolBOT relies on the
assumptions that each framework poses on the internal architecture of components. In
CoolBOT we have considered that composing a complex system using a modular set
of components requires not only communication, but also monitoring and control facil-
ities. While in principle SmartSoft considers components as opaque modules or units
of interaction, CoolBOT imposes a common internal architecture on all components,

5.2. Final Comments 173

mainly reflected on the use of the same state automaton and a minimal common inter-
face for monitoring and control, i.e. the control and monitoring ports. Nevertheless,
SmartSoft incorporates the state pattern that seems to be not a mere communication
pattern, but a pattern concerned with control and coordination issues. It is rather
obscure if using this pattern components can still be considered as opaque entities,
or there must exist a minimal internal control structure that must be shared among
components.

Finally, the wiring pattern of SmartSoft stands for what in CoolBOT is the set of
operations for establishing and de-establishing port connections at runtime. Evidently
this is a key feature when we deal with robotic systems. Changing the conditions and
contexts in which a system is evolving should be reflected in changes of the topology
of components which conforms and integrate the software that controls that system.

5.2.2 GenoM

GenoM [Fleury et al., 1997] [Fleury and Herrb, 1998] is part of a multilevel robotic ar-
chitecture developed at LAAS that has been applied in a large number of projects
and used over many different robots. Like SmartSoft, GenoM was also commented in
chapter 2. GenoM (Generator of Modules) is the layer of the LAAS architecture re-
sponsible of defining the components (formerly termed modules in LAAS jargon) of a
robotic system and is mainly concerned with the definition of the internal architecture
of components. It considers that a component is made up of three entities: a set of al-
gorithms, an execution engine and a communication library. Algorithms are formulated
as elementary pieces of code or codels. These codels constitute the atomic instructions
that the execution engine sequences, and are always run atomically, i.e. they can’t be
interrupted. The execution engine is generic and is in charge of executing the codels,
managing the internal state of the component and handling data and control flow. A
communication library is used to offer communication services to components.

In GenoM’s most recent version, a strong emphasis has been placed on mak-
ing codels as independent as possible of the rest of the framework. The idea is to
clearly separate code that is part of the framework (execution engine and communica-
tion library) from the code that really constitute the component (codels). Codels are
grouped into a codel library and is this library the only part of the system that need
to be shared between researchers to exchange components. Both the execution engine
and the communication library are part of the default framework and independent of
codels. The execution engine sequences codels that implement component’s services.
This sequencing is modelled as a state automaton with codels associated to states and
transitions between states, very much like it is done in CoolBOT. Interestingly, the
execution engine is designed to offer bounded execution time warranties to compo-
nents and, although it is presently not available, execution engines specially suited to
hard-real time or particular operating systems could be designed. The communication
library seems to offer only a basic poster pattern and it looks to be much less developed
that the counterparts of SmartSoft or CoolBOT.

174 Chapter 5. Conclusions and Future Work

GenoM has been a strong source of inspiration for modelling CoolBOT’s com-
ponents and, not surprisingly, they share many features. The main - as opposed to
SmartSoft - is that components in both frameworks have a well defined internal ar-
chitecture organized around a state automaton. This characteristic, that does not
compromise the functionality of the component, seems to be central in order to achieve
properties like reactivity, uniform error recovery mechanisms and generic control and
monitoring procedures for both approaches. As a framework, CoolBOT makes avail-
able a richer set of communication facilities between local or distributed components,
in the form of port types and ICC mechanisms, than GenoM. The concept of codels,
although much more delineated in GenoM, is also shared between both frameworks.
GenoM associates codels to services, states and state transitions. In CoolBOT, states
and state transitions have associated handlers that play the same role. Nevertheless,
a major difference between both approaches exists in the definition of codels and han-
dlers. Currently, CoolBOT components are in the last term C++ program files, while
GenoM codels are declared using a devoted language making explicit many important
parameters and options. This effectively allows for decoupling generic definition of com-
ponents (i.e. codels) from specific instantiations of the same components. Eventually,
this information could be useful for a low level planner or scheduler.

5.2.3 Orocos

The EU-funded OROCOS project [Orocos, 2003] has been launched with the aim of
“defining the robot software of the future” and shares many goals with SmartSoft,
GenoM and CoolBOT. The LAAS lab is a partner in the OROCOS project, together
with K.U. Leuven and CAS/KTH (Stockholm), and Christian Schlegel, designer of
SmartSoft, is also associated to this project.

Orocos is still an on-going project that has three open fronts. K.U. Leuven, the
project leader, has been working on providing a realtime control framework using real-
time versions of the GNU/Linux OS. This work has produced two main contributions.
One is a layer for abstracting device drivers, called the Framework Device Interface
(FDI). The other is a portable abstraction of operating system’s details regarding
system calls, threads interface, IPC mechanisms, etc. This layer is termed as the
Framework Operating System Interface (FOSI). Another of the partners, CAS/KTH
in cooperation with Christian Schlegel is working on achieving a CORBA-based com-
munication framework that should be considered as a new version of SmartSoft. In
this front there seems to be interest on addressing real-time communication issues us-
ing real-time implementations of CORBA. Finally, the LAAS group has been working
on a second version of GenoM that should provide OROCOS framework with an event
based, realtime and programmable execution engine for handling component’s control
flow. As already pointed out, OROCOS is still an open project whose achievements
need to be evaluated.

5.3. Conclusions 175

5.3 Conclusions

Some conclusions have been drawn from the work that has been presented in this thesis.
They have been organized into two groups: general conclusions, and conclusions related
to the experiments.

5.3.1 General Conclusions

5.3.1.1 Uniformity

Having independent and asynchronous units of execution that share the same basic in-
ternal structure and the same basic external interface for monitoring and control, allows
a basic treatment of such entities in spite of the functionality they have individually.
This is a wide-spread and well-know principle in the operating system community. In
fact, one of the main questions an operating system developer must face is how to
model processes and threads for a specific operating system, and which services and
primitives it provides for such a model. All operating system imposes on the programs
they can execute, an uniform internal structure and an uniform external interface in
order to make them uniformly treatable, administrable and executable by the operat-
ing system independently of the functionality these programs have. As a consequence,
programs for a given operating system are deployable units of software that does not
need any further modification to be executed.

Chimera is a clear example of this idea applied in the robotic field as we com-
mented in chapter 2. Chimera is a real time operating system, aimed to robotics
and developed at CMU [Stewart and Khosla, 1993] [Stewart and Khosla, 1996]
[Stewart et al., 1997] [Stewart, 1994] where the minimal units of execution that the op-
erating system handles, are port-based objects with a uniform structure and interface.
These features guarantee reusability, deployment and recycling of these port-based
objects between machines running under Chimera.

Following the same idea, CoolBOT imposes some uniformity on the units of
execution it defines, the CoolBOT components. This uniformity makes components
externally observable and controllable, and treatable by the framework in an uniform
and consistent way. Furthermore, the uniformity the framework imposes makes them
also integrable with other components to built more complex systems, in a way that
converts them in elements of deployable software.

5.3.1.2 Deployment, Reuse and Recycling of Components

CoolBOT components, once they have been designed, built and tested, constitute soft-
ware units providing independent functionalities that may be used where needed. Cool-
BOT components are black boxes that hide their functionality behind an interface of
output and input ports together with a set of observable and controllable variables. In
a given system it is easy to interchange components having the same external interface

176 Chapter 5. Conclusions and Future Work

and similar functionality.

5.3.1.3 Visibility

Access to component internal state and structure by means of the default monitoring
and control ports, makes components observable and controllable. The internal opera-
tion of any component can be observed by means of its monitoring port. On the other
side, components can be controlled by means of their control port in order to drive
them to a specific controlled state.

5.3.1.4 Inter Component Communications

Having multiple flows of execution sharing the same computer resources and inter-
communicating between them to achieve a specific functionality is a recurrent problem
when programming robotic systems. And, although it is a frequent problem, and due
to the complexity of these kind of systems, it is not a trivial question to which it is
necessary to pay much attention during design and implementation. In fact, oftely, it
is also the source of critical and hard-to-identify bugs.

CoolBOT fosters asynchronous execution and inter-communication, what facil-
itates runtime uncoupling and promotes execution driven by data, i.e., components
consume CPU resources when they have something to process at their input ports.
Inter component communication (ICC) is carried out by means of port connections
formed by pairs of output and input ports. CoolBOT provides a rich typology of out-
put and input ports that allow for a wide set of port connections, modelling multiple
patterns of interaction between components. All these types of port connections uti-
lize internally the same set of basic inter component communication mechanisms that
minimize inter component synchronization (the cache motto), and uncouple the pro-
cessing of components involved in any connection (asynchronous communications). In
addition, remote components can be reachable locally by means of an infrastructure of
proxy components and CoolBOT servers.

A component developer does not have to worry about synchronization issues
due to simultaneous accesses between components, neither does it have to worry about
if the component he/she is implementing will interact only with local or remote com-
ponents, at design time this is irrelevant. The same objects and methods are used to
communicate with local and remote components. Thus, in terms of inter component
communications, he/she only has to worry about the output and input ports his/her
component will offer through its external interface, and the port packets that these
output and input ports will accept.

5.3.1.5 Multithreading

Concurrency and parallelism are serious issues to which is necessary to dedicate many
efforts when programming robotic systems. Simultaneous and not-synchronized ac-

5.3. Conclusions 177

cesses to the same resources by multiple units of execution are in the origin of a wide
set of problems. The use of multiple operating systems with different thread models
introduce even a higher level of difficulty.

In CoolBOT, multithreading is modelled at three levels: the level of compound
components where a supervisor (a thread) runs the component’s automaton, and mon-
itors and controls a set of component instances (and even port threads, if necessary);
the level of atomic components where the main thread executes the automaton and
controls and monitors a set of port threads; and finally, the level of port threads where
threads are modelled as input-port-driven threads. In a given system the threads run-
ning at a specific instant of time synchronize each other, irrespective of their thread
level, in the same way, using port connections formed by output and input ports, that
in the case of port threads will be private output and input ports. That supposes an
important saving of effort at the time of programming robotic systems. In CoolBOT,
the different units of execution (compound and atomic components, and port threads)
are modelled as active entities, driven by the data they receive through their input
ports, and that produce their results using their output ports. Thus, a developer, once
he/she models a component in these terms, should not be worried about simultaneous
non-synchronized accesses to shared resources or critical sections, the framework cares
about all of it behind the scenes.

5.3.1.6 A Model for Exception Handling

Robustness is a permanent design goal in every robotic project, however it is also
difficult to achieve due to the complexity involved: sensors and effectors have their own
set of specific operating errors; the same is applicable to different operating systems;
equally each data link protocol and hardware generates its own specific mal-function
situations; on the other side, some necessary legacy, third-party or reused code may
utilize its particular scheme for error handling (for instance, C++ exception versus
C return values); in addition, different programmers and developers involved in the
same project can pose different strategies for error recovery; and finally, it is necessary
to add that the problem the system has to solve has its own particular set of errors.
All this makes difficult to design from scratch a “normalized” model for dealing with
errors, exceptions, and faulty situations in every system. We think this problem would
be simplified if the framework we use to program systems provided us with a coherent
model for dealing with errors.

CoolBOT promotes an uniform approach for handling faulty situations, estab-
lishing a local and an external level of exception handling. Exceptions are first handled
locally in the components where the exceptions come out. If they can not be handled at
this local level, they are deferred to the compound component where these components
are included. This handling scales, in turn, going up in a hierarchy of components.
In addition to that, it is possible to provoke externally the occurrence of an exception
in a given component (by using the new exception controllable variable). This feature
permits a better testing and debugging of components when they take part into larger
systems, systems of which the component was ignorant when it was designed and built.

178 Chapter 5. Conclusions and Future Work

It should be pointed out that this feature can be exploited without having to modify a
single line of code. This is an interesting feature in order to develop better and more
robust components and systems, because it is not only possible to test a component
individually, but also to test what happens when something goes wrong in a complex
system conformed by multiple components.

5.3.1.7 Strong Design Requirements

Certaninly, CoolBOT imposes a number of strong requirements on components,
namely:

• The uniformity of internal structure and external interface.

• The modelling of components as functional units of independent execution that
performs all its external communication by means of its external interface of ports
accepting a specific set of port packets

• The uniform approach for component exception handling that the framework
imposes when building components.

These are strong design requirements that could be considered as too-tightening
demands that may limit in excess programmer´s freedom. Our experience is just the
opposite. These design requirements should be better considered as framework facilities
that disciplines the programmer/developer and obliges him/her to pay much attention
to component design and engineering. All that makes software less error-prone.

5.3.1.8 Generality

CoolBOT has been devised in order to facilitate the development of software aimed at
controlling robotic systems, but evidently it might be also useful for building software
in other computer science fields that share the same problems and issues, and where
the abstractions, the programming philosophy and the infrastructure that CoolBOT
offers are also useful. As an example, a field where we consider that CoolBOT could
be applied with interesting expectatives is multi-agent systems.

5.3.1.9 Asynchronous Model of Execution

In general, CoolBOT favors a programming methodology that fosters concurrency and
parallelism, asynchronous execution, asynchronous inter communication and data-flow-
driven processing. Thus, in CoolBOT, the behavior of a whole system comes up from
the integration of the components taking part into the system, and from the coor-
dination of the interaction between the behaviors of all of them. Computationally,
a working system, in terms of CoolBOT, is a network of components wired through
port connections, whose execution may be distributed along the whole network, and is
driven by the data the port connections transport.

5.3. Conclusions 179

5.3.1.10 Control vs. Functionality

CoolBOT provides means to separate control and functionality when programming
systems. It is not difficult to separate control and functionality in components. In
compound components, control may be concentrated exclusively in the supervisor ; the
functionality can be obtained by means of the integration and coordination of the
different local component instances. In atomic components, the main thread may be
used as the repository of the control code of a component, meanwhile the functionality
the component provides may be implemented in one or more port threads. Notice that,
in this way, it is possible to reduce the main thread to a minimum, which would just
need to pay attention to the updates that the controllable variables of the component
may receive. Having a minimal main thread makes a component completely responsive
to control actions exerted on it, making possible to achieve faster control loops.

5.3.1.11 Operating System Support

Currently, CoolBOT is supported under the Windows family of operating systems
(Windows NT, 98, 2000 and XP), and GNU/Linux. Given that those operating systems
are not real-time, and that CoolBOT relies on the thread model of the underlying oper-
ating systems to map its support for multithreading, the framework can not guarantee
any realtime requirement by itself. However, CoolBOT provides some mechanisms and
resources which usually are characteristic of real time operating systems (timers, watch-
dogs, etc.), and it can keep soft real-time requirements, since the operating systems
where it runs actually can keep such requirements [Ramamritham and Shen, 1998]
[Gopalan, 2001].

5.3.2 Experimental Conclusions

5.3.2.1 Port Connections and ICC Mechanisms

Some experiments have been carried out to clarify which typology of port connections
is more convenient for one-producer-multiple-consumers configurations. The results
obtained from these experiments have confirmed the internal design given to each one
of the types of port connections under study, although some interesting conclusions
have been also drawn. One of them is that synchronization costs can be dominant
in some situations, specially when the number of components involved in the same
port connection grows. Other interesting conclusion is that results in the operating
systems above which CoolBOT currently executes (the family of Windows operating
systems – Windows NT, 98, 2000 and XP – and GNU/Linux) are very similar in spite
of the thread models each one utilizes internally. All in all, results have allowed us to
establish some rules or recipes of design regarding some common situations, such as
high frequency producers, high frequency consumers and the sharing of complex data
structures, that would be useful for guiding design decisions when building CoolBOT
components.

180 Chapter 5. Conclusions and Future Work

5.3.2.2 Incremental Development

As proof-of-concept some basic examples has been built and tested using CoolBOT.
From a mobile robot initially showing an avoiding obstacle behavior that allowed to
herd it, the examples scaled up in small steps in order to add new capacities to the
robot. Thus, we got to a robot with a wandering behavior that could avoid obsta-
cles, and after that, we ended up with a more capable robot able to get to a docking
station on its own. Along all these steps of achievement we have shown that compo-
nent composition promotes and facilitates incremental development, and incremental
debugging. We think following such an approach of development would facilitate the
construction of more complex and capable systems out of a wide and diverse set of
capable components.

5.3.2.3 Component Reuse

One of the main motivations that gave birth to the work presented in this docu-
ment was the necessity of a methodology to avoid duplication, reconstruction from the
scratch, and re-engineering of software already operative. The approach followed in
CoolBOT has been based on defining components as units of deployment that may be
easily integrated wherever needed. In the basic examples used as proof-of-concept of
the framework the same components were used, in different systems without further
modifications.

5.4 Future Work

In this document we have presented a tool for programming robotic systems in the
form of a framework of C++ classes that favors a specific programming methodology
based on component construction and integration. Also, a few examples illustrating
some meaningful characteristics of the framework have been shown, but, nevertheless,
there are many exciting lines of future developments within CoolBOT. The following
paragraphs enumerate the next steps we think will be important sources of future work.

5.4.1 Development Tools

Currently, developing CoolBOT components once they have been designed, is a quite
systematic and repetitive process, at least to get to a first working component skeleton.
Usually the process consists in starting with the skeleton code of a component, and
modifying it in order to obtain the functionality we want. There is already a small
set of developed components, and component examples illustrating the most common
patterns of use. Although systematic, this process is cumbersome and boring. A com-
piler that were able to generate component skeletons automatically from a description
code, would be more than desirable. It will not only reduce the programming skills and
knowledge about CoolBOT internals currently needed for programming components,

5.4. Future Work 181

but it will also reduce drastically programming errors shortening to the same extent
development time.

A tool that would be also clearly interesting is a component debugger where it
could be possible to observe any component through its monitoring port, and modify
its internal behavior using its control port using friendly graphical user interfaces.

Finally we consider also of great interest the availability of a component profiler,
a tool that were able to show chronograms relating execution times of the different
running components conforming a specific system.

5.4.2 Support for Real Time Operating Systems

Currently, CoolBOT operates under the Windows family of operating systems (Win-
dows NT, 98, 2000 and XP), and GNU/Linux. Although CoolBOT provides some
mechanisms and resources which usually are characteristic of real time operating sys-
tems (timers, watchdogs, etc.), CoolBOT is not a real-time framework. At last term, it
relies in the thread model that the underlying operating system utilizes, therefore if the
operating system is not real-time, then, consequently, the framework is not real-time.
The experience with the operating systems where CoolBOT works actually indicates
that the framework is useful in robotic systems with soft-real time requirements like,
for instance, active vision systems and entertainment robotics. Evidently, this is pos-
sible because such operating systems really allow to keep soft-realtime requirements
[Ramamritham and Shen, 1998] [Gopalan, 2001]. In order to give support to robotic
applications with hard real-time constraints we are considering to port CoolBOT to one
real-time operating system like RTLinux [RTLinux, 2003] or RTAI [RTAI, 2003] might
be an interesting line of future work, providing that, on one side CoolBOT already
implements an operating system abstraction layer which would facilitate its porting to
other operating systems. On the other side, surely it would be very attractive to know
how ICC mechanisms could take advantage of some typical features available in such
operating systems, such as the use of real-time watchdogs, the possibility of influencing
the operation of the real-time scheduler, etc.

5.4.3 Network Support

Currently, CoolBOT has a network support based on a connection-oriented model
of communication between components residing in different computers in a network.
Components can only reach other components in other machines if they are already
in execution. We consider an interesting feature, a service to instantiate components
remotely. Maybe to do so it would be interesting the porting of the current network
support based on TCP/IP sockets to a CORBA [Henning and Vinoski, 1999] imple-
mentation where there are plenty of network services available.

182 Chapter 5. Conclusions and Future Work

5.4.4 Component Graphical Interfaces

Graphic interfaces are particularly a source of problems when code reuse and recycling
is a requirement, specially if portability across different operating systems is an issue.
Windowing APIs rely usually on specific operating systems, and the appearance they
endow to applications may be very different. Sometimes the effort necessary to design
and implement a consistent visual-look for the applications conforming a project is
bigger than expected, due to the complexity of obtaining consistency in appearance,
and keeping, at the same time, the code portable. We consider that un-coupling the
graphical interface of components from the functionality they give, and abstracting
the graphical API that is used at last term in each machine under which CoolBOT
is executed, could reduce considerably the effort devoted to the design of graphical
interfaces when constructing components and systems.

5.4.5 Development of Complex Demonstrators

In this document some basic small examples have been presented to illustrate the
features and means that CoolBOT offers to robotic system developers. Evidently, the
more components we have, the more complex the systems we could build would be.
How long does CoolBOT scale?. Only the development of complex demonstrators out
of a wide-enough set of robust ready-to-use components will bring an answer to this
question.

5.4.6 Framework Promotion

A framework like CoolBOT without users has really no interest. We think CoolBOT
is a valid and useful approach to program robotic systems, and promoting their use is
obviously an objective that we have in mind. Evidently, the development of complex
demonstrators is a mean of promotion by itself, but other means of diffusion are also
interesting: the elaboration of how-to documents and tools such as compilers, debug-
gers and profilers, more examples showing component patterns of use, the creation of
a repository of diverse and different ready-to-use components reflecting the implemen-
tation of robotic state-of-art algorithms, licensing the CoolBOT source code using the
GPL software license [FSF, 2003], supporting vehicle controllers for the most popular
mobile robots, supporting real time operating systems, etc.

5.4.7 CoolBOT as a Long-Term Experimental Tool

For us, CoolBOT is a long-term experimental tool of which this work is only a first
design and development effort. The development of programming tools, the definition
and adding of an uniform and uncoupled graphical interface model for components, the
porting of CoolBOT to real-time operating systems, the built of complex demonstra-
tors, and the promotion of the framework to increase the user base, all them constitute

5.4. Future Work 183

future objectives we foresee that, finally, will help to validate this methodology on the
long-term.

184 Chapter 5. Conclusions and Future Work

Appendix A

CoolBOT Programming Style

C++ code that implements CoolBOT has been written according to the syntactic style
and coding rules that will be presented in this appendix.

A.1 Naming

As to naming there are four main rules of coding style, the first one of them affects
identifiers of macros, enumeration constants and constants, the second one affects the
rest of identifiers, the third one is related to type identifiers, and the last one can affect
all kind of identifiers.

A.1.1 Macros, Enumeration Constants and Constants

Identifiers of macros and constants that are used as macros, and enumeration constants
are spelled completely in uppercase letters. Besides, if they are formed by more than
a word, these are separated by a “_” character, figure A.1 illustrates the rule.

...
#define THIS_IS_A_MACRO ...
...
const int THIS_IS_A_CONSTANT = ...;
...
enum AnEnumeration { FIRST_VALUE, ..., LAST_VALUE };
...

Figure A.1: Macros and constants codification.

A.1.2 Other identifiers

Identifiers of:

185

186 Appendix A. CoolBOT Programming Style

• class data members, whether static or not,

• class member functions, whether static or not,

• global variables, global objects and global functions,

• automatic variables and objects defined inside a block, even if they are affected
by the static modifier,

• any function formal parameter,

• and variables, objects and functions defined in file scope, i.e., variables, objects
and functions defined out of class or name space scope, whether affected or not
by the static modifier.

should be spelled in lowercase letters. In case of being formed by more than one word,
the second one and the rest of words should start with a capital letter and they are
written without any other character between them, illustrated by figure A.2.

...
AType aGlobalOrFileScopeVariable;
extern OtherType aGlobalVariable;
static AnotherType aFileScopeVariale;

JustAType aGlobalOrFileScopeFunction(...) { ... }
extern ATypeAgain aGlobalFunction(...) { ... }
static OneMoreType aFileScopeFunction(...) { ... }
...
class AClass
{

public:

static SomeType aStaticDataMember;
static AnyType aStaticMemberFucntion(...);

SomeOtherType aDataMember;
AnyOtherType aMemberFucntion(OneType aParameter,...)
{

TheLastType anAutomaticVariable;
...

}
...

};
...

Figure A.2: Generic naming of identifiers.

A.1.3 Types

Type identifiers (classes, structs, typedefs, . . .) should always be spelled in lowercase
letters starting with an uppercase. If the identifier is compound by more than a word,

A.1. Naming 187

all of them are spelled in lowercase letters starting also with an uppercase and written
without any other character or letter separating them. Figure A.3 illustrates this rule.

...
enum AnEnumeration { ... };
...
class AClass { ... };
...
typedef AType ATypeAlias;
...
struct AnotherClass { ... };
...

Figure A.3: Naming for type identifiers.

A.1.4 Prefixes and Suffixes

Identifiers can be affected by several prefixes and suffixes. These prefixes and suffixes
are used to indicate the class access modifiers affecting an identifier and, to know
whether the identifier is either a pointer or a reference.

• Access Prefixes and Suffixes

In the scope of a class, any identifier, even for subtypes, should include a prefix
or/and a suffix, depending on its access modifier, according to the next rules:

– Private access: Any identifier with the modifier private will be prefixed
by a “_” character and also suffixed by another “_” character.

– Protected access: Any identifier with the modifier protected will be
prefixed by a “_” character.

– Public access: Public identifiers will not be affected by any access prefixes
or suffices.

Figure A.4 illustrates these rules.

• Pointer and Reference Prefixes

Identifiers referred to pointers and references will be respectively prefixed accord-
ing to:

– Pointers: An identifier of a pointer will be prefixed by a “p” lowercase
letter, if it is a double pointer, will be prefixed by two “p” lowercase letters.
By three “p”´s if it is a triple pointer, and so on.

– Pointers to Members: An identifier of a pointer to a class data member
will be prefixed by a “pm” prefix.

– References: An identifier of a reference will be prefixed by a lowercase “r”
letter.

188 Appendix A. CoolBOT Programming Style

...
class AClass
{

public:
...
class APublicSubType { ... };
AType aPublicDataMember;
OtherType aPublicMemberFunction(...);
...

protected:
...
class _AProtectedSubType { ... };
AType _aProtectedDataMember;
OtherType _aProtectedMemberFunction(...);
...

private:
...
class _APrivateSubType_ { ... };
AType _aPrivateDataMember_;
OtherType _aPrivateMemberFunction_(...);
...

};
...

Figure A.4: Access prefixes and suffixes.

– References to Members: An identifier of a reference to a class data
member will be prefixed by a “rm” prefix.

– Function Pointers: An identifier of a function pointer will be prefixed by
the “pf” prefix.

– Member Function Pointers: An identifier of a pointer of a class member
function will be prefixed by the “pmf” prefix.

When an identifier is affected by any of these prefixes, the first word of the iden-
tifier should start with a capital letter, contrary to what was indicated in section A.1.2
(see figure A.5). Rules affecting pointers and references are not applied to function
identifiers, whether member functions or not, and neither to macros, constants used as
macros, and enumeration constants.

A.2 Brace Style

This section is dedicated to where and how to open and close braces to define code
blocks. The generic rule used in CoolBOT coding has been to put an opening brace
“{” starting a block in its own line and the same to finish the block using a closing
brace “}”, as shown in figure A.6.

When a block involves just a few short sentences, it is possible to put everything
in the same line, braces and sentences, see figure A.7.

A.3. Indentation 189

...
AType* pAGlobalOrFileScopePointer;
OtherType** ppAGlobalOrFileScopeDoublePointer;
AnotherType& rAGlobalOrFileScopeReference;
OneMoreType (*pfAGlobalFunctionPointer)(...);

AgainAType AClass::* pmADataMemberPointer;

AndAgainTheSameType AClass::& rmADataMemberReference;

ReturnType (AClass::* pmfAMemberFunctionPointer)(...);

...

class AClass
{

public:
...
MyType* pAPublicPointerDataMember;
...

protected:
...
YourType** _ppAProtectedDoublePointerDataMember;
...

private:
...
HisType& _rAPrivateReferenceDataMember_;
HerType& _aPrivateMemberFunction_(...);
TheirType (* _pfAPrivateFunctionPointer_)(...);
...

};
...

Figure A.5: Prefixes for pointers and references.

A.3 Indentation

As to indentation the rule in CoolBOT is to indent with a tab space everything that
is included in a block, even blocks consisting just in only one sentence without braces.
Note, however, that braces delimiting the block, if any, are not indented. Furthermore,
code gets indented also with a tab space when it follows a public, protected or
private access modifier in the definition of a class, as can be observed in figures A.6
and A.7.

A.4 Other Comments and Remarks

The different figures along this document try to illustrate all the coding style rules
using in CoolBOT, but if there were any doubt respect to any aspect that has remained
ambiguous, be free to have a look at the real code to observe them. All CoolBOT code

190 Appendix A. CoolBOT Programming Style

...
AType aFunction(...)
{

...
for(....)
{

...
}
...
if(...)
{

...
}
else
{

...
}
...

}
...
class AClass
{

...
};
...

Figure A.6: Brace coding for blocks.

...
class AClass
{

...
private:

...
void _defaults_()
{ _aDataMember_=...; _anotherDataMember_=...; ...; }
...
void _release_()
{ _justOtherDataMember_=...; _oneMoreDataMember_=...; ...; }
...

};
...

Figure A.7: One line blocks.

is spread under a directory root that should have been called coolbot.

Bibliography

[Activ Media Robotics, 2002] Activ Media Robotics (2002). Pioneer 2/PeopleBot Op-

erations Manual Version 11. http://robots.activmedia.com.

[Activ Media Robotics, 2003] Activ Media Robotics (2003). Aria Reference Manual

Version 1.2.0. http://robots.activmedia.com.

[Alami et al., 1995] Alami, R., Aguilar, L., Bullata, H., Fleury, S., Herrb, M., Ingrand,

F., Khatib, M., and Robert, F. (1995). A General Framework for Multi-robot Coop-

eration and its Implementation on a Set of Three Hilare Robots. In 4th International

Symposium on Experimental Robotics (ISER’95), pages 26–39, Stanford, CA, USA.

[Alami et al., 1998] Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand,

F. (1998). An Architecture for Autonomy. International Journal of Robotics Re-

search (Special Issue on Integrated Architectures for Robot Control and Program-

ming), 17(4):315–337.

[Andersson et al., 1999] Andersson, M., Orebäck, A., Lindström, M., and Christensen,

H. I. (1999). ISR: an Intelligent Service Robot. Intelligent Sensor Based Robotics.

Lecture Notes in Artificial Intelligence, Springer Verlag, Heidelberg.

[Arkin, 1989] Arkin, R. C. (1989). Motor Schema-Based Mobile Robot Navigation.

International Journal of Robotics Research, 8(4):92–112.

[Arkin, 1992] Arkin, R. C. (1992). Homeostatic Control for a Mobile Robot: Dynamic

Replanning in Hazardous Environments. The International Journal of Robotics Re-

search, 9(2):197–214.

[Arkin, 1998] Arkin, R. C. (1998). Behavior Based Robotics. The MIT Press.

[Arkin and Balch, 1997] Arkin, R. C. and Balch, T. R. (1997). AuRA: Principles and

Practice in Review. Journal of Experimental and Theoretical Artificial Intelligence

(JETAI), 9(2-3):175–189.

191

192 BIBLIOGRAPHY

[Arnold et al., 2000] Arnold, K., Gosling, J., and Holmes, D. (2000). The Java Pro-

gramming Language. Addison-Wesley Java Series. Addison Wesley.

[Balch, 2000] Balch, T. (2000). Teambots. http://www.teambots.org.

[Bloomer, 1992] Bloomer, J. (1992). Power Programming with RPC. O’Reilly & As-

sociates, Inc.

[Bonasso et al., 1997] Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller,

D., and Slack, M. (1997). Experiences with an Architecture for Intelligent, Reactive

Agents. Journal of Experimental and Theoretical Artificial Intelligence, 9(2):237–

256.

[Bover and Cesati, 2001] Bover, D. P. and Cesati, M. (2001). Understanding the

LINUX Kernel. O’Reilly, First edition.

[Brooks, 1986] Brooks, R. (1986). A robust layered control system for a mobile robot.

IEEE Journal of Robotics and Automation, 2(1):14–23.

[Cabrera et al., 2000] Cabrera, J., Hernández, D., Domı́nguez, A. C., Castrillón, M.,

Lorenzo, J., Isern, J., Guerra, C., Pérez, I., Falcón, A., Hernández, M., and Méndez,

J. (2000). Experiences with a museum robot. Workshop on Edutainment Robots

2000, Institute for Autonomous Intelligent Systems, German National Research Cen-

ter for Information Technology, Bonn, 27-28 September, Germany. Also available

through URL ftp://mozart.dis.ulpgc.es/pub/Publications/eldi5p.ps.gz.

[Cabrera-Gámez et al., 2000] Cabrera-Gámez, J., Domı́nguez-Brito, A. C., and

Hernández-Sosa, D. (2000). Coolbot: A component-oriented programming frame-

work for robotics. Dagstuhl Seminar 00421, Modelling of Sensor-Based Intelligent

Robot Systems, To appear in Springer Lecture Notes in Computer Science in summer

2001. Centro de Tecnoloǵıa de los Sistemas y de la Inteligencia Artificial (CeTSIA),

University of Las Palmas de Gran Canaria, Edificio de Informática y Matemáticas,

Campus Universitario de Tafira, 35017 Las Palmas, SPAIN.

[Chappell, 1996] Chappell, D. (1996). Understanding ActiveX and OLE - A Guide for

Developers & Managers. Microsoft Press.

[Clark et al., 1992] Clark, R. J., Arkin, R. C., and Ram, A. (1992). Learning Momen-

tum: On-line Performance Enhancement for Reactive Systems. In IEEE Interna-

tional Conference on Robotics and Automation, pages 111–116, Nice, Francia.

BIBLIOGRAPHY 193

[Coradeschi and Saffiotti, 2003] Coradeschi, S. and Saffiotti, A. (2003). An

introduction to the anchoring problem. Robotics and Autonomous Sys-

tems, 43(2-3):85–96. Special issue on perceptual anchoring. Online at

http://www.aass.oru.se/Agora/RAS02/.

[Coste-Maniere and Simmons, 2000] Coste-Maniere, E. and Simmons, R. (2000). Ar-

chitecture, the Backbone of Robotic Systems. Proc. IEEE International Conference

on Robotics and Automation (ICRA’00), San Francisco.

[Domı́nguez-Brito et al., 2000a] Domı́nguez-Brito, A. C., Andersson, M., and Chris-

tensen, H. I. (2000a). A Software Architecture for Programming Robotic Systems

based on the Discrete Event System Paradigm. Technical Report CVAP 244, Centre

for Autonomous Systems, KTH - Royal Institute of Technology), S-100 44 Stock-

holm, Sweden.

[Domı́nguez-Brito et al., 2002] Domı́nguez-Brito, A. C., Herńındez-Sosa, D., and

Cabrera-Gámez, J. (2002). Programming with Components in Robotics. Waf 2002

- III Workshop Hispano-Luso en Agentes F́ısicos, Murcia.

[Domı́nguez-Brito et al., 2000b] Domı́nguez-Brito, A. C., Herńındez-Tejera, F. M., and

Cabrera-Gı́mez, J. (2000b). A Control Architecture for Active Vision Systems. Fron-

tiers in Artificial Intelligence and Applications: Pattern Recognition and Applica-

tions, M.I. Torres and A. Sanfeliu (eds.), pp. 144-153, IOS Press, Amsterdam.

[Fedor, 1993] Fedor, C. (1993). TCX - An Interprocess Communication System for

Building Robot Architectures: Programmer´s Guide to version 10.xx. Carnegie

Mellon University, Pittsburgh, Pennsylvania.

[Firby, 1989] Firby, R. J. (1989). Adaptive Execution in Dynamic Domains. PhD

thesis, Departament of Computer Science, Yale University.

[Firby et al., 1995] Firby, R. J., Kahn, R. E., Prokopwicz, P., and Swain, M. J. (1995).

An Architecture for Vision and Action. In Proceedings of the Fourteenth Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-95), pages 72–81, Montreal,

Canada.

[Fleury and Herrb, 1998] Fleury, S. and Herrb, M. (1998). GenoM: Manuel

d´Utilisation. LAAS Report N◦98xxx, http://www.laas.fr.

[Fleury et al., 1997] Fleury, S., Herrb, M., and Chatila, R. (1997). GenoM: A Tool

for the Specification and the Implementation of Operating Modules in a Distributed

194 BIBLIOGRAPHY

Robot Architecture. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 842–848, Grenoble, Francia.

[FSF, 2003] FSF (2003). The GNU Project. http://www.gnu.org. The Free Software

Foundation.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).

Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley

Professional Computing Series. Addison-Wesley.

[Gat, 1992] Gat, E. (1992). Integrating Planning and Reacting in a Heterogeneous

Asynchronous Architecture for Controlling Real-World Mobile Robots. In Proceed-

ings of the Tenth National Conference on Artificial Intelligence, pages 809–815, San

Jose, CA, USA.

[Gat, 1997] Gat, E. (1997). ESL: A Language for Supporting Robust Plan Execution in

Embedded Autonomous Agents. In Proceedings of the IEEE Aerospace Conference,

pages 319–324, Aspen, CO, USA.

[Gopalan, 2001] Gopalan, K. (2001). Real-Time Support in General Purpose Operating

Systems. ECSL Technical Report TR92, Experimental Computer Systems Labs,

Computer Science Department. State University of New York at Stony Brook.

[Guerra-Artal, 2002] Guerra-Artal, C. (2002). Contribuciones al Seguimiento Visual

Precategórico. PhD thesis, Departamento de Informática y Sistemas. Universidad de

Las Palmas de Gran Canaria.

[Guzzoni et al., 1997] Guzzoni, D., Cheyer, A., Julia, L., and Konolige, K. (1997).

Many Robots Make Short Work. AI Magazine, 18(1):55–64.

[Henning and Vinoski, 1999] Henning, M. and Vinoski, S. (1999). Advanced CORBA

Programming with C++. Addison-Wesley Professional Computing Series. Addison-

Wesley.

[Hernández-Sosa, 2003] Hernández-Sosa, J. D. (2003). Adaptación Computacional en

Sistemas Percepto-Efectores. Propuesta de Arquitectura y Poĺıticas de Control. PhD

thesis, Dpto. Informática y Sistemas, Universidad de Las Palmas de Gran Canaria.

[Hernández-Tejera et al., 1999] Hernández-Tejera, M., Cabrera-Gámez, J., Castrillón-

Santana, M., Domı́nguez-Brito, A. C., Guerra-Artal, C., Hernández-Sosa, D., and

Isern-González, J. (1999). DESEO: an Active Vision System for Detection, Tracking

BIBLIOGRAPHY 195

and Recognition, volume 1542, pages 376–391. International Conference on Vision

Systems, Las Palmas de Gran Canaria, Spain. Springer-Verlag Lecture Notes on

Computer Science. ISBN 3-540-65459-3.

[IEEE, 1996] IEEE (1996). POSIX Standard Specification. IEEE Std 1003.1, 1996

Edition. http://standards.ieee.org. IEEE Standards Association. NoneInternational

Standard ISO/IEC 9945-1: 1996 (E) IEEE Std 1003.1, 1996 Edition (Incorporating

ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993, 1003.1c-1995, and 1003.1i-1995).

[Konolige et al., 1997] Konolige, K., Myers, K., Saffiotti, A., and Ruspini, E. (1997).

The Saphira Architecture: a Design for Autonomy. Journal of Experimental and

Theoretical Artificial Intelligence, 9(1):215–235.

[Kortenkamp et al., 1998] Kortenkamp, D., Bonasso, R. P., and Murphy, R. E. (1998).

Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems.

MIT Press.

[Kortenkamp and Schultz, 1999] Kortenkamp, D. and Schultz, A. C. (1999). Integrat-

ing robotics research. Autonomous Robots, 6:243–245.

[Kos̆ecká, 1996] Kos̆ecká, J. (1996). Supervisory Control Theory of Autonomous Mobile

Agents. PhD thesis, University of Pennsylvania, GRASP Laboratory.

[Kos̆ecká et al., 1997] Kos̆ecká, J., Christensen, H. I., and Bajcsy, R. (1997). Experi-

ments in Behavior Composition. Robotics and Autonomous Systems, 19:287–298.

[Langer et al., 1994] Langer, D., Rosenblatt, J. K., and Herbert, M. (1994). A

Behavior-Based System for Off-Road Navigation. IEEE Journal of Robotics and

Automation, 10(6):776–782.

[Lyons, 1990] Lyons, D. M. (1990). A process-based approach to task representation.

IEEE Proceedings Robotics and Automation, pages 2142–2147.

[Lyons and Arbib, 1989] Lyons, D. M. and Arbib, M. A. (1989). A formal model

of computation for sensory-based robotics. IEEE Transactions on Robotics and

Automation, 5(3):280–293.

[Monson-Haefal, 2001] Monson-Haefal, R. (2001). Enterprise JavaBeans. O’Reilly.

[MSDN, 2002] MSDN (2002). Microsoft Visual Studio .NET Documentation. Mi-

crosoft Develover Network Web Site - msdn.microsoft.com, Visual Studio .NET.

196 BIBLIOGRAPHY

[MSDN, 2002] MSDN (2002). Microsoft Visual Studio .NET Documentation. MSDN

Library: Windows Development. Windows Base Services: DLLs, Processes and

Threads. Microsoft Develover Network Web Site - msdn.microsoft.com, Visual Stu-

dio .NET.

[Murphy, 2000] Murphy, R. R. (2000). Introduction to AI Robotics. The MIT Press.

[Nichols et al., 1996] Nichols, B., Buttlar, D., and Farrell, J. P. (1996). Pthreads Pro-

gramming. O’Reilly.

[Noreils, 1990] Noreils, F. R. (1990). Integrating Error Recovery in a Mobile Robot

Control System. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 396–401. IEEE Computer Society Press.

[Orebäck and Christensen, 2003] Orebäck, A. and Christensen, H. I. (2003). Evalua-

tion of Architectures for Mobile Robotics. Autonomous Robots. Kluwer Academic

Publishers, 14:33–49.

[Orebäck et al., 2000] Orebäck, A., Lindström, M., and Christensen, H. (2000).

BERRA - A Behaviour Based Robot Architecture. Proc. Int. Conf. on Robotics

and Automation (ICRA), San Francisco.

[Orocos, 2003] Orocos (2003). The Orocos Project. http://www.orocos.org.

[Pirjanian, 1998] Pirjanian, P. (1998). Multiple Objective Action Selection and Be-

havior Fusion Using Voting. PhD thesis, Dpt. of Medical Informatics and Image

Analysis, Aalborg University.

[Ram et al., 1994] Ram, A., Arkin, R. C., Boone, G., and Pearce, M. (1994). Using

Genetic Algorithms to Learn Reactive Control Parameters for Autonomous Robotic

Navigation. Journal of Adaptive Behavior, 2(3):277–305.

[Ram et al., 1992] Ram, A., Arkin, R. C., Clark, R. J., and Moorman, K. (1992).

Case-Based Reactive Navigation: A Case-Based Method for On-line Selection and

Adaptation of Reactive Control Parameters in Autonomous Robotic Systems. Tech-

nical report, Georgia Tech.

[Ramamritham and Shen, 1998] Ramamritham, K. and Shen, C. (1998). Us-

ing Windows NT for Real-Time Applications: Experimental Observations and

Recommendations. IEEE Real-Time Technology and Applications Symposium

(merl.com/people/shen/pubs/rtas98.pdf).

BIBLIOGRAPHY 197

[Richter, 1997] Richter, J. (1997). Advanced Windows. Microsoft Press, Third edition.

[Rosenblatt, 1995] Rosenblatt, J. K. (1995). DAMN: A Distributed Architecture for

Mobile Navigation. In Proceedings of the AAAI Spring Symp. on Lessons Learned

from Implememted Software Architectures for Physical Agents, Stanford, CA, USA.

[RTAI, 2003] RTAI (2003). Realtime Linux Application Interface for Linux.

http://www.rtai.org. Dipartimento di Ingegneria Aerospaziale, Politecnico di Mi-

lano.

[RTLinux, 2003] RTLinux (2003). Real Time Linux. http://www.rtlinux.org. FSM-

Labs Inc.

[Saffiotti et al., 1997] Saffiotti, A., Ruspini, E. H., and Konolige, K. (1997). Using

Fuzzy Logic for Mobile Robot Control. In Prade, H., Dubois, D., and Zimmer-

mann, H. J., editors, International Handbook of Fuzzy Sets and Possibility Theory,

volume 5. Kluwer Academic Publishers Group, Norwell, MA, USA, and Dordrecht,

The Netherlands.

[Schlegel, 2003] Schlegel, C. (2003). Overview of the OROCOS::SmartSoft Approach.

http://www1.faw.uni-ulm.de/orocos/.

[Schlegel and Wörz, 1999a] Schlegel, C. and Wörz, R. (1999a). Interfacing Different

Layers of a Multilayer Architecture for Sensorimotor Systems using the Object Ori-

ented Framework SmartSoft. Third European Workshop on Advanced Mobile Robots

- Eurobot´99. Zürich, Switzerland.

[Schlegel and Wörz, 1999b] Schlegel, C. and Wörz, R. (1999b). The Software Frame-

work SmartSoft for Implementing Sensorimotor Systems. IEEE/RSJ International

Conference on Intelligent Robots and Systems, IROS’99, Kyongju, Korea.

[Schmidt, 1994] Schmidt, D. C. (1994). The Adaptative Communication Environment.

An Object-Oriented Network Programming Toolkit for Developing Communication

Software. In Proceedings of the 11 th and 12 th Sun User Group Conferences, San

Jose, USA.

[Silberschatz et al., 2001] Silberschatz, A., Galvin, B. P., and Gagne, G. (2001). Op-

erating System Concepts. John Wiley & Sons Inc.

[Simmons, 1992] Simmons, R. (1992). Concurrent Planning and Execution for Au-

tonomous Robots. IEEE Control Systems, 12(1):46–50.

198 BIBLIOGRAPHY

[Simmons and Apfelbaum, 1998] Simmons, R. and Apfelbaum, D. (1998). A Task De-

scription Language for Robot Control. Proc. International Conference on Intelligent

Robotics and Systems, Vancouver, Canada.

[Solomon and Russinovich, 2000] Solomon, D. A. and Russinovich, M. E. (2000). In-

side Microsoft Windows 2000. Microsoft Programming Series. Microsoft Press, Third

edition.

[Stallings, 2000] Stallings, W. (2000). Operating Systems: Internals and Design Prin-

ciples. Prentice Hall International Editions. Prentice Hall.

[Steenstrup et al., 1983] Steenstrup, M., Arbib, M. A., and Manes, E. G. (1983). Port

automata and the algebra of concurrent processes. Journal of Computer and System

Sciences, 27:29–50.

[Stevens, 1998] Stevens, W. R. (1998). UNIX Network Programming. Networking

APIs: Sockets and XTI, volume 1. Prentice Hall, Second edition.

[Stewart, 1994] Stewart, D. B. (1994). Real-Time Software Design and Analysis of

Reconfigurable Multi-Sensor Based Systems. PhD thesis, Carnegie Mellon University,

Dept. Electrical and Computing Engineering, Pittsburgh.

[Stewart and Khosla, 1993] Stewart, D. B. and Khosla, P. (1993). Chimera 3.1: the

Real-Time Operating System for Reconfigurable Sensor-Based Control Systems. Ad-

vanced Manipulators Laboratory, The Robotics Institute and Department of Elec-

trical and Computer Engineering, Carnegie Mellon University.

[Stewart and Khosla, 1996] Stewart, D. B. and Khosla, P. (1996). The chimera

methodology: Designing dynamically reconfigurable and reusable real-time software

using port-based objects. International Journal of Software Engineering and Knowl-

edge Engineering, 6(2):249–277.

[Stewart et al., 1997] Stewart, D. B., Volpe, R. A., and Khosla, P. (1997). Design

of dynamically reconfigurable real-time software using port-based objects. IEEE

Transactions on Software Engineering, 23(12):759–776.

[Stroustrup, 2000] Stroustrup, B. (2000). The C++ Programming Language. Addison

Wesley, Special Edition edition.

[Szyperski, 1999] Szyperski, C. (1999). Component Software: Beyond Object-Oriented

Programming. Addison-Wesley.

BIBLIOGRAPHY 199

[Tsotsos, 1995] Tsotsos, J. K. (1995). Behaviorist intelligence and the scaling problem.

Artificial Intelligence, 75(4):135–160.

[Turing, 1937] Turing, A. M. (1936-1937). On Computable Numbers, with an Applica-

tion to the Entscheidungsproblem. In Proc. London Maths. Soc., ser. 2, volume 42,

pages 230–265.

200 BIBLIOGRAPHY

Index

3T, 18

Action-oriented perception, 151

API, 1

Application programming interface, 1

Architectures, 12

Hybrid architectures, 13

Strict-layered architectures, 12, 13

Asynchronous communications, 65

AuRA, 16

Basic ICC mechanisms, 65

Active reception, 71

Active sending, 66

Active sending with copy, 67

AR, 71

AS, 66

ASC, 67

Passive reception, 68

Passive sending, 70

PR, 68

PS, 70

Receiver shared reading, 75

Receiver shared writing, 76

RSR, 75

RSW, 76

Sender shared reading, 75

Sender shared writing, 74

Signal reception, 73

Signal sending, 73

SR, 73

SS, 73

SSR, 75

SSW, 74

BERRA, 24

Binary deployment, 14

CAV, 34

Chimera, 33

Communication models

Pull model, 88

Push model, 88

Component-oriented framework, 14

Components

Atomic components, 42, 92

Automaton states, 44

Entry section, 44

Exit section, 44

Transitions, 45

Component compositions, 91

Component defaults, 49

Default automaton, 53

Default controllable variables, 50

Default exceptions, 56

Default observable variables, 50

Default timer, 56

The control port, 50

The empty transition port, 56

The main thread, 56, 59

The monitoring port, 50

The timer port, 56

Component exceptions, 45

201

202 INDEX

Component execution control loop,

52

Component hierarchies, 109

Component kernel, 60

Component priority, 47

Component uniformity, 48

Compound components, 42, 109

Component topologies, 110

Exception handling, 114

External mapping, 112

Hierarchy of control, 111

Internal mapping, 112

The supervisor, 110

Controllable variables, 45

Go Home component, 157

Input port priorities, 64

Observable variables, 45

PF Avoiding component, 134

Pioneer component, 92

Port automaton, 43

Generator, 43

Priority policy, 47

Normal policy, 47

Realtime priority, 47

Robustness, 45

Strategic PF component, 141

The component kernel, 57

Threads, 57

Port thread kernel, 58

Port threads, 57

The main thread, 59

Timers, 46

User automaton, 53

Entry state, 53

Vision Server component, 154

Wander component, 148

Watchdogs, 46

Port watchdogs, 46

Control Architecture for Active Vision

Systems, 34

DAMN, 20

Data-flow-driven machines, 63

DESEO, 35

Detección, Seguimiento y Re-

conocimiento de Objetos,

35

Distributed components

CoolBOT servers, 121

Proxy components

Network mapped input ports, 118

Network mapped output ports,

118

Proxy components, 117

Complementary interface, 118

Network mapped port connec-

tions, 118

Eldi, 35

ESL, 29

Exchange data representation library,

98

Frameworks, 11

GenoM, 25, 173

ICC, 65

Input-port-driven thread, 57

Inter component communications, 64

Inter component synchronization, 65

Inter process communications, 64

IPC, 64

Libraries, 11

INDEX 203

Orocos, 174

Ports

Complementary input ports, 117

Complementary output ports, 117

Input ports, 44

IFifo, 81

ILast, 80

IMultiPacket, 85, 86

IPoster, 82

IPriorities, 87

IPull, 88

IShared, 84

ITick, 79

IUFifo, 82

Non signaled, 62

Signaled, 62

Testing, 62

Waiting, 62

Multi packet ports, 91

Output ports, 44

IFifo, 90

ILast, 90

IMultiPacket, 90

IUFifo, 90

OGeneric, 80–82, 90

OLazyMultiPacket, 86, 90

OMultiPacket, 85, 90

OPoster, 82

OPriority, 87

OPull, 88

OShared, 84

OTick, 79

Port connections, 44, 78

Fifo connections, 81

Last connections, 80

Lazy multi packet connections, 86

Multi packet connections, 85

Poster connections, 82

Priority connections, 87

Pull connections, 88

Shared connections, 84

Simple multi packet connections,

90

Tick connections, 79

Unbounded fifo connections, 82

Port packets, 44

Shared packets, 74

Private ports, 44

Public ports, 44

Simple packet ports, 91

Potential fields, 134

Attractive potential field, 143

Docking potential field, 145

Repulsive potential field, 134

Uniform potential field, 143

Principle of Controllability, 37

Principle of Robustness, 36

Process algebra operators, 162

Asynchronous recurrent composi-

tion operator, 168

Conditional composition operator,

163

Disabling composition operator, 166

Parallel composition operator, 165

Sequential composition operator,

162

Synchronous recurrent composition

operator, 167

Programming languages, 10

Robot Schemas, 162

Robustness motto, 36

RS, 162

204 INDEX

Saphira, 22

Scopes, 122

Atomic component scope, 123

Compound component scope, 123

Top level scope, 123

Sensor fashion, 151

Sensor fission, 151

Sensor fusion, 151

SFX, 17

SmartSoft, 31, 171

Software Component, 13

Source-code deployment, 14

Subsumption, 15

TDL, 29

XDR, 98

